Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732011

RESUMO

Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.


Assuntos
Camelídeos Americanos , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Animais , Camelídeos Americanos/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Ensaios de Triagem em Larga Escala/métodos , Afinidade de Anticorpos , Técnicas de Visualização da Superfície Celular/métodos
2.
J Agric Food Chem ; 72(19): 10753-10771, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706131

RESUMO

Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.


Assuntos
Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Humanos , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Anticorpos Neutralizantes/imunologia , Toxinas Biológicas/imunologia , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/imunologia , Camelus/imunologia
3.
Signal Transduct Target Ther ; 9(1): 131, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740785

RESUMO

Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , Imunoglobulina M , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Animais , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Imunoglobulina M/imunologia , Imunoglobulina M/genética , Camundongos , Domínios Proteicos , Microscopia Crioeletrônica
4.
Protein Expr Purif ; 219: 106485, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642863

RESUMO

BACKGROUND: Rational design of synthetic phage-displayed libraries requires the identification of the most appropriate positions for randomization using defined amino acid sets to recapitulate the natural occurrence. The present study uses position-specific scoring matrixes (PSSMs) for identifying and randomizing Camelidae nanobody (VHH) CDR3. The functionality of a synthetic VHH repertoire designed by this method was tested for discovering new VHH binders to recombinant coagulation factor VII (rfVII). METHODS: Based on PSSM analysis, the CDR3 of cAbBCII10 VHH framework was identified, and a set of amino acids for the substitution of each PSSM-CDR3 position was defined. Using the Rosetta design SwiftLib tool, the final repertoire was back-translated to a degenerate nucleotide sequence. A synthetic phage-displayed library was constructed based on this repertoire and screened for anti-rfVII binders. RESULTS: A synthetic phage-displayed VHH library with 1 × 108 variants was constructed. Three VHH binders to rfVII were isolated from this library with estimated dissociation constants (KD) of 1 × 10-8 M, 5.8 × 10-8 M and 2.6 × 10-7 M. CONCLUSION: PSSM analysis is a simple and efficient way to design synthetic phage-displayed libraries.


Assuntos
Biologia Computacional , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Animais , Camelidae/genética , Camelidae/imunologia , Fator VII/genética , Fator VII/química , Fator VII/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos
5.
Microb Cell Fact ; 23(1): 124, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689251

RESUMO

BACKGROUND: Having a simple and fast dividing organism capable of producing and exposing at its surface or secreting functional complex biomolecules with disulphide bridges is of great interest. The mycoplasma bacterial genus offers a set of relevant properties that make it an interesting chassis for such purposes, the main one being the absence of a cell wall. However, due to their slow growth, they have rarely been considered as a potential platform in this respect. This notion may be challenged with the recent discovery of Mycoplasma feriruminatoris, a species with a dividing time close to that of common microbial workhorses. So far, no tools for heterologous protein expression nor secretion have been described for it. RESULTS: The work presented here develops the fast-dividing M. feriruminatoris as a tool for secreting functional biomolecules of therapeutic interest that could be used for screening functional mutants as well as potentially for protein-protein interactions. Based on RNAseq, quantitative proteomics and promoter sequence comparison we have rationally designed optimal promoter sequences. Then, using in silico analysis, we have identified putative secretion signals that we validated using a luminescent reporter. The potential of the resulting secretion cassette has been shown with set of active clinically relevant proteins (interleukins and nanobodies). CONCLUSIONS: We have engineered Mycoplasma feriruminatoris for producing and secreting functional proteins of medical interest.


Assuntos
Proteínas de Bactérias , Mycoplasma , Mycoplasma/metabolismo , Mycoplasma/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Proteômica , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/genética
6.
Methods Mol Biol ; 2754: 131-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512665

RESUMO

Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Proteínas tau/genética , Epitopos , Cadeias Pesadas de Imunoglobulinas/química , Biblioteca Gênica
7.
J Med Virol ; 96(3): e29528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501378

RESUMO

The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/genética , Anticorpos Monoclonais , Epitopos , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Protein Expr Purif ; 218: 106441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367654

RESUMO

Nanobodies (Nbs) represent a class of single-domain antibodies with great potential application value across diverse biotechnology fields, including therapy and diagnostics. Thymic Stromal Lymphopoietin (TSLP) is an epithelial cell-derived cytokine, playing a crucial role in the regulation of type 2 immune responses at barrier surfaces such as skin and the respiratory/gastrointestinal tract. In this study, a method for the expression and purification of anti-TSLP nanobody (Nb3341) was established at 7 L scale and subsequently scaled up to 100 L scale. Key parameters, including induction temperature, methanol feed and induction pH were identified as key factors by Plackett-Burman design (PBD) and were optimized in 7 L bioreactor, yielding optimal values of 24 °C, 8.5 mL/L/h and 6.5, respectively. Furthermore, Diamond Mix-A and Diamond MMC were demonstrated to be the optimal capture and polishing resins. The expression and purification process of Nb3341 at 100L scale resulted in 22.97 g/L titer, 98.7% SEC-HPLC purity, 95.7% AEX-HPLC purity, 4 ppm of HCP content and 1 pg/mg of HCD residue. The parameters of the scaling-up process were consistent with the results of the optimized process, further demonstrating the feasibility and stability of this method. This study provides a highly promising and competitive approach for transitioning from laboratory-scale to commercial production-scale of nanobodies.


Assuntos
Anticorpos de Domínio Único , Linfopoietina do Estroma do Timo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Citocinas/metabolismo , Células Epiteliais , Diamante/metabolismo
9.
Viruses ; 16(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399961

RESUMO

Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos de Domínio Único/genética , SARS-CoV-2/genética , Pandemias , Encéfalo , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Microb Cell Fact ; 23(1): 45, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341572

RESUMO

Peste des petits ruminants (PPR) is an acute, contact infectious disease caused by the small ruminant morbillivirus (SRMV), and its morbidity in goats and sheep can be up to 100% with significant mortality. Nanobody generated from camelid animals such as alpaca has attracted wide attention because of its unique advantages compared with conventional antibodies. The main objective of this study was to produce specific nanobodies against SRMV and identify its characteristics. To obtain the coding gene of SRMV-specific nanobodies, we first constructed an immune phage-displayed library from the VHH repertoire of alpaca that was immunized with SRMV-F and -H proteins. By using phage display technology, the target antigen-specific VHHs can be obtained after four consecutive rounds of biopanning. Results showed that the size of this VHH library was 2.26 × 1010 CFU/mL and the SRMV-F and -H specific phage particles were greatly enriched after four rounds of biopanning. The positive phage clones were selected and sequenced, and total of five independent different sequences of SRMV-specific nanobodies were identified. Subsequently, the DNA fragments of the five nanobodies were cloned into E. coli BL21(DE3), respectively, and three of them were successfully expressed and purified. Specificity and affinity towards inactivated SRMV of these purified nanobodies were then evaluated using the ELISA method. Results demonstrated that NbSRMV-1-1, NbSRMV-2-10, and NbSRMV-1-21 showed no cross-reactivity with other antigens, such as inactivated BTV, inactivated FMDV, His-tag labeled protein, and BSA. The ELISA titer of these three nanobodies against inactivated SRMV was up to 1:1000. However, only NbSRMV-1-21 displayed SRMV neutralizing activity at a maximum dilution of 1:4. The results indicate that the nanobodies against SRMV generated in this study could be useful in future applications. This study provided a novel antibody tool and laid a foundation for the treatment and detection of SRMV.


Assuntos
Bacteriófagos , Camelídeos Americanos , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Anticorpos de Domínio Único , Animais , Ovinos , Anticorpos de Domínio Único/genética , Escherichia coli/genética , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/prevenção & controle , Anticorpos , Antígenos , Cabras
11.
Microbiol Spectr ; 12(4): e0419922, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363137

RESUMO

In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE: Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Anticorpos de Domínio Único/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
12.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 350-366, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369826

RESUMO

Nanobody (Nb) is a novel type of antibody discovered in the serum of Camelidae. It is characterized by its small size, high specificity, stability, and ease of preparation. Nanobodies exhibit the ability to identify hidden epitopes and have diverse applications across various fields. This review aims to introduce three key stages in the screening and optimization of nanobodies, including nanobody library construction, in vitro surface display, and affinity maturation. We provide a brief description of preparation and characteristics of natural, immunological, and semi-synthetic/synthetic libraries. Additionally, we systematically explain eight in vitro display methods, including phage display, yeast display, bacterial display, ribosome display/mRNA display, and eukaryotic cell display. Furthermore, we discuss the application of yeast two-hybrid system high-throughput sequencing and mass spectrometry identification. A thorough analysis of their advantages and limitations is presented in this protocols. Finally, we summarize the platforms for in vitro or computer-aided affinity maturation techniques aimed at enhancing the functional stability of nanobodies. Consequently, this review provides a comprehensive approach to the integrated utilization of various technologies for the rapid development of stable, reliable, and specific nanobody-based drugs or diagnostic agents.


Assuntos
Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/genética , Camelidae , Clonagem Molecular , Epitopos , Saccharomyces cerevisiae/genética
13.
BMC Infect Dis ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350843

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an evolving global pandemic, and nanobodies, as well as other single-domain antibodies (sdAbs), have been recognized as a potential diagnostic and therapeutic tool for infectious diseases. High-throughput screening techniques such as phage display have been developed as an alternative to in vivo immunization for the discovery of antibody-like target-specific binders. METHODS: We designed and constructed a highly diverse synthetic phage library sdAb-U (single-domain Antibody - Universal library ) based on a human framework. The SARS-CoV-2 receptor-binding domain (RBD) was expressed and purified. The universal library sdAb-U was panned against the RBD protein target for two rounds, followed by monoclonal phage ELISA (enzyme-linked immunosorbent assay) to identify RBD-specific binders (the first stage). High-affinity binders were sequenced and the obtained CDR1 and CDR2 sequences were combined with fully randomized CDR3 to construct a targeted (focused) phage library sdAb-RBD, for subsequent second-stage phage panning (also two rounds) and screening. Then, sequences with high single-to-background ratios in phage ELISA were selected for expression. The binding affinities of sdAbs to RBD were measured by an ELISA-based method. In addition, we conducted competition ELISA (using ACE2 ectodomain S19-D615) and SARS-CoV-2 pseudovirus neutralization assays for the high-affinity RBD-binding sdAb39. RESULTS: Significant enrichments were observed in both the first-stage (universal library) and the second-stage (focused library) phage panning. Five RBD-specific binders were identified in the first stage with high ELISA signal-to-background ratios. In the second stage, we observed a much higher possibility of finding RBD-specific clones in phage ELISA. Among 45 selected RBD-positive sequences, we found eight sdAbs can be well expressed, and five of them show high-affinity to RBD (EC50 < 100nM). We finally found that sdAb39 (EC50 ~ 4nM) can compete with ACE2 for binding to RBD. CONCLUSION: Overall, this two-stage strategy of synthetic phage display libraries enables rapid selection of SARS-CoV-2 RBD sdAb with potential therapeutic activity, and this two-stage strategy can potentially be used for rapid discovery of sdAbs against other targets.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Enzima de Conversão de Angiotensina 2 , COVID-19/diagnóstico , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
Protein Expr Purif ; 216: 106431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184161

RESUMO

Human pepsinogens (mainly pepsinogen I and pepsinogen II) are the major inactive precursor forms of the digestive enzyme pepsin which play a crucial role in protein digestion. The levels and ratios of human pepsinogens have demonstrated potential as diagnostic biomarkers for gastrointestinal diseases, particularly gastric cancer. Nanobodies are promising tools for the treatment and diagnosis of diseases, owing to their unique recognition properties. In this study, recombinant human pepsinogens proteins were expressed and purified as immunized antigens. We constructed a VHH phage library and identified several nanobodies via phage display bio-panning. We determined the binding potency and cross-reactivity of these nanobodies. Our study provides technical support for developing immunodiagnostic reagents targeting human pepsinogens.


Assuntos
Pepsinogênios , Anticorpos de Domínio Único , Humanos , Pepsinogênios/metabolismo , Anticorpos de Domínio Único/genética , Mucosa Gástrica/metabolismo , Pepsina A
15.
Plant Biotechnol J ; 22(4): 876-891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966715

RESUMO

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.


Assuntos
COVID-19 , Nanopartículas , Vírus de Plantas , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Anticorpos de Domínio Único/genética , COVID-19/genética , Nanopartículas/química , Anticorpos Neutralizantes , Anticorpos Antivirais
16.
Methods Mol Biol ; 2748: 289-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070121

RESUMO

Bioengineered probiotics enable new opportunities to improve cancer treatment strategies due to their tumor-colonizing capabilities. Here, we will describe the development of a probiotic E. coli Nissle 1917 platform encoding a synchronized lysis mechanism for the localized and sustained release of blocking nanobodies against immune checkpoint molecules like programmed cell death protein-ligand 1 and cytotoxic T lymphocyte-associated protein-4. Specifically, we will detail the experimental protocols needed to (1) encode and validate binding of recombinantly produced checkpoint blockade nanobodies, (2) evaluate the therapeutic efficacy and safety of the probiotic platform in syngeneic tumor-bearing mice, and (3) analyze the immunophenotype of the tumor microenvironment.


Assuntos
Neoplasias , Probióticos , Anticorpos de Domínio Único , Camundongos , Animais , Escherichia coli/genética , Anticorpos de Domínio Único/genética , Probióticos/uso terapêutico , Microambiente Tumoral
17.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052492

RESUMO

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Assuntos
Antineoplásicos , Toxinas Bacterianas , Imunotoxinas , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Exotoxinas/genética , Exotoxinas/farmacologia , Exotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Imunotoxinas/química , Mesotelina , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , ADP Ribose Transferases/genética , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias/tratamento farmacológico
18.
Front Immunol ; 14: 1258156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022548

RESUMO

Introduction: Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors, and each component plays an important role in the function and anti-tumor efficacy. It has been reported that using human sequences or a low affinity of CAR single-chain variable fragments (scFvs) in the CAR binding domains is a potential way to enhance the function of CAR-T cells. However, it remains largely unknown how a lower affinity of CARs using humanized scFvs affects the function of CAR-T cells until recently. Methods: We used different humanized anti-HER2 antibodies as the extracellular domain of CARs and further constructed a series of the CAR-T cells with different affinity. Results: We have observed that moderately reducing the affinity of CARs (light chain variable domain (VL)-based CAR-T) could maintain the anti-tumor efficacy, and improved the safety of CAR therapy both in vitro and in vivo compared with high-affinity CAR-T cells. Moreover, T cells expressing the VL domain only antibody exhibited long-lasting tumor elimination capability after multiple challenges in vitro, longer persistence and lower cytokine levels in vivo. Discussion: Our findings provide an alternative option for CAR-T optimization with the potential to widen the use of CAR T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Linfócitos T
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(11): 1024-1031, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37980554

RESUMO

Objective To generate the phage display nanobody library immunized by lymphocyte-activation gene 3 (LAG-3) and to validate the functional activity of obtained anti-LAG-3 nanobodies. Methods The peripheral blood cDNA library was isolated from the adult llama which was immunized by human LAG-3 protein. The nanobodies sequences were obtained by nested PCR and cloned into the phagemid vector pComb3XSS, then transformed into Escherichia coli XL1-Blue cells for library generation and quality analysis. Anti-LAG-3 specific nanobodies were screened by phage display and sequenced by next-generation sequencing. Nanobodies were cloned into pET-22b (+) vector and Escherichia coli BL21 (DE3) cells were used for protein expression. The proteins were purified by using the Prism A column, then HPLC-MS, ELISA, Western blot, and surface plasmon resonance technology (SPR) were performed to characterize the nanobodies. Results The library capacity of the nanobody phage immune library with great diversity was 7.20×108 CFU/mL. After four rounds of biopanning, three individual nanobodies with distinct amino acid sequences VHH-L1-3, VHH-L3-2 and VHH-L13-2 were picked. The purity of the purified nanobodies was more than 95%. All of these three nanobodies exhibited high binding affinities with recombinant human LAG-3 specifically, among which the KD value of VHH-L13-2 was 3.971×10-9 mol/L. VHH-L13-2 exhibited the inhibitory effects on the association of LAG-3 and its ligand FGL-1, and the half maximal inhibitory concentration (IC50) value was 15.58 nmol/L. Conclusion The anti-LAG-3 phage display nanobody library is generated successfully. The anti-LAG-3 nanobodies possess high specificity and binding affinity and exhibit the inhibitory effects on the association of LAG-3 and its ligand.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/genética , Ligantes , Ativação Linfocitária , Sequência de Aminoácidos , Escherichia coli/genética
20.
Nat Commun ; 14(1): 7473, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978291

RESUMO

In the rapidly advancing field of synthetic biology, there exists a critical need for technology to discover targeting moieties for therapeutic biologics. Here we present INSPIRE-seq, an approach that utilizes a nanobody library and next-generation sequencing to identify nanobodies selected for complex environments. INSPIRE-seq enables the parallel enrichment of immune cell-binding nanobodies that penetrate the tumor microenvironment. Clone enrichment and specificity vary across immune cell subtypes in the tumor, lymph node, and spleen. INSPIRE-seq identifies a dendritic cell binding clone that binds PHB2. Single-cell RNA sequencing reveals a connection with cDC1s, and immunofluorescence confirms nanobody-PHB2 colocalization along cell membranes. Structural modeling and docking studies assist binding predictions and will guide nanobody selection. In this work, we demonstrate that INSPIRE-seq offers an unbiased approach to examine complex microenvironments and assist in the development of nanobodies, which could serve as active drugs, modified to become drugs, or used as targeting moieties.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Epitopos/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA