Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.993
Filtrar
1.
Curr Microbiol ; 81(7): 169, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733424

RESUMO

The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Reposicionamento de Medicamentos , Internalização do Vírus/efeitos dos fármacos , Simulação de Dinâmica Molecular
2.
J Infect Dev Ctries ; 18(4): 520-531, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728643

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic caused global health, economic, and population loss. Variants of the coronavirus contributed to the severity of the disease and persistent rise in infections. This study aimed to identify potential drug candidates from fifteen approved antiviral drugs against SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike protein (6M0J) using virtual screening and pharmacokinetics to gain insights into COVID-19 therapeutics. METHODOLOGY: We employed drug repurposing approach to analyze binding performance of fifteen clinically approved antiviral drugs against the main protease of SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike proteins bound to ACE-2 receptor (6M0J), to provide an insight into the therapeutics of COVID-19. AutoDock Vina was used for docking studies. The binding affinities were calculated, and 2-3D structures of protein-ligand interactions were drawn. RESULTS: Rutin, hesperidin, and nelfinavir are clinically approved antiviral drugs with high binding affinity to proteins 6LU7, 5B6O, and 6M0J. These ligands have excellent pharmacokinetics, ensuring efficient absorption, metabolism, excretion, and digestibility. Hesperidin showed the most potent interaction with spike protein 6M0J, forming four H-bonds. Nelfinavir had a high human intestinal absorption (HIA) score of 0.93, indicating maximum absorption in the body and promising interactions with 6LU7. CONCLUSIONS: Our results indicated that rutin, hesperidin, and nelfinavir had the highest binding results against the proposed drug targets. The computational approach effectively identified SARS-CoV-2 inhibitors. COVID-19 is still a recurrent threat globally and predictive analysis using natural compounds might serve as a starting point for new drug development against SARS-CoV-2 and related viruses.


Assuntos
Antivirais , COVID-19 , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Pandemias , Betacoronavirus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química
3.
Org Biomol Chem ; 22(19): 3986-3994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695061

RESUMO

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Micro-Ondas , Polissacarídeos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Células Vero , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/síntese química , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/síntese química , Sulfatos/química , Sulfatos/farmacologia , Sulfatos/síntese química , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade
4.
Drug Des Devel Ther ; 18: 1547-1571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737333

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Compostos Heterocíclicos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , COVID-19
5.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708183

RESUMO

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Assuntos
Antivirais , Lignanas , Proteínas Recombinantes , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Proteínas Recombinantes/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Animais , Nanopartículas/química
6.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
7.
Carbohydr Polym ; 337: 122156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710572

RESUMO

Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 µg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.


Assuntos
Antivirais , COVID-19 , Mananas , Polissacarídeos , SARS-CoV-2 , Alga Marinha , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Humanos , SARS-CoV-2/efeitos dos fármacos , Alga Marinha/química , Antivirais/farmacologia , Antivirais/química , Células HEK293 , Camundongos , COVID-19/prevenção & controle , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Desoxiaçúcares/farmacologia , Desoxiaçúcares/química , Enzima de Conversão de Angiotensina 2/metabolismo
8.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
9.
Sci Rep ; 14(1): 10253, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704431

RESUMO

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Assuntos
Antivirais , Infecções por Citomegalovirus , Elastina , Muromegalovirus , Peptídeos , Fosfoproteínas , Proteínas da Matriz Viral , Animais , Elastina/química , Elastina/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Camundongos , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Muromegalovirus/efeitos dos fármacos , Humanos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Citomegalovirus/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/farmacocinética , Modelos Animais de Doenças , Polipeptídeos Semelhantes à Elastina
10.
Sci Rep ; 14(1): 10419, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710746

RESUMO

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Indóis , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Células HEK293 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Simulação por Computador , COVID-19/virologia , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química
11.
AAPS PharmSciTech ; 25(5): 98, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714600

RESUMO

Respiratory diseases caused by viruses are a serious global health threat. Although the use of hand sanitizers containing alcohol and synthetic antiseptic agents is recognized as an effective, simple, and low-cost measure to combat viral transmission, they can harm human health and the environment. Thus, this work aimed to study the efficacy of combining Camellia sinensis and Chamomilla recutita extracts in a skin- and eco-friendly leave-on hand sanitizer to prevent the spread of respiratory viruses. An oil-in-water emulsion containing C. recutita oily extract (5.0%), C. recutita glycolic extract (0.2%) and C. sinensis glycolic extract (5.0%) showed virucidal activity against HAdV-2 (respiratory virus) and two surrogate viruses of SARS-CoV-2 (HSV-1 and MVH-3), showing great potential to prevent the spread of respiratory viruses. These natural extracts combined are also promising to combat a broad spectrum of other viruses, in the form of antiseptic mouthwashes or throat sprays, surface disinfectants, and veterinary products, among others. Complementally, the developed hand sanitizer demonstrated efficacy against bacteria and fungus.


Assuntos
Antivirais , Higienizadores de Mão , Extratos Vegetais , Higienizadores de Mão/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Antivirais/farmacologia , Antivirais/química , Camellia sinensis/química , Animais , SARS-CoV-2/efeitos dos fármacos , Chlorocebus aethiops , COVID-19/prevenção & controle , COVID-19/virologia
12.
Comput Biol Med ; 175: 108529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718667

RESUMO

Many health challenges are attributed to viral infections, which represent significant concerns in public health. Among these infections, diseases such as herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV) infections have garnered attention due to their prevalence and impact on human health. There are specific antiviral medications available for the treatment of these viral infections. Drugs like Cidofovir, Valacyclovir, and Acyclovir are commonly prescribed. These antiviral drugs are known for their efficacy against herpesviruses and related viral infections, leveraging their ability to inhibit viral DNA polymerase. A molecular descriptor is a numerical value that correlates with specific physicochemical properties of a molecular graph. This article explores the calculation of distance-based topological descriptors, including the Trinajstic, Mostar, Szeged, and PI descriptors for the aforementioned antiviral drugs. These descriptors provide insights into these drugs' structural and physicochemical characteristics, aiding in understanding their mechanism of action and the development of new therapeutic agents.


Assuntos
Antivirais , Antivirais/uso terapêutico , Antivirais/química , Antivirais/farmacologia , Humanos , Aciclovir/uso terapêutico , Aciclovir/química , Aciclovir/farmacologia , Biologia Computacional/métodos , Cidofovir/uso terapêutico , Cidofovir/química , Citosina/análogos & derivados , Citosina/uso terapêutico , Citosina/química , Valaciclovir/uso terapêutico
13.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731545

RESUMO

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Assuntos
Antibacterianos , Antifúngicos , Antivirais , Cobre , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antivirais/farmacologia , Antivirais/química , Cobre/química , Cobre/farmacologia , Celulose/química , Celulose/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Têxteis , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/efeitos dos fármacos , Lignina/química , Lignina/farmacologia , Humanos
14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732115

RESUMO

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Assuntos
Antivirais , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Antivirais/química , Antivirais/farmacologia , Teoria da Densidade Funcional , Termodinâmica , Isoindóis/química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Azóis/química , Azóis/farmacologia
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732134

RESUMO

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Assuntos
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732151

RESUMO

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Assuntos
Antivirais , Produtos Biológicos , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Vírus da Influenza A/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Cães
17.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732174

RESUMO

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.


Assuntos
Sítio Alostérico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Regulação Alostérica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Ligantes , Humanos , Sítios de Ligação , Conformação Proteica , Antivirais/química , Antivirais/farmacologia , Antivirais/metabolismo , Multimerização Proteica , Aprendizado de Máquina
18.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732185

RESUMO

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Humanos , Células Vero , Animais , Simplexvirus/efeitos dos fármacos , Simplexvirus/fisiologia , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Carbolinas/farmacologia , Carbolinas/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Harmina/farmacologia , Harmina/química , Harmina/análogos & derivados
19.
Chimia (Aarau) ; 78(4): 222-225, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676613

RESUMO

Enzymes are natural catalysts which are gaining momentum in chemical synthesis due to their exquisiteselectivity and their biodegradability. However, the cost-efficiency and the sustainability of the overall biocatalytic process must be enhanced to unlock completely the potential of enzymes for industrial applications. To reach this goal, enzyme immobilization and the integration into continuous flow reactors have been the cornerstone of our research. We showed key examples of the advantages of those tools for the biosynthesis of antivirals, anticancer drugs, and valuable fragrance molecules. By combining new strategies to immobilize biocatalysts, innovative bioengineering approaches, and process development, the performance of the reactions could be boosted up to 100-fold.


Assuntos
Biocatálise , Química Verde , Perfumes , Preparações Farmacêuticas , Antivirais/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Perfumes/síntese química , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/química
20.
Eur J Pharm Sci ; 197: 106766, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615970

RESUMO

One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.


Assuntos
Administração Intranasal , Antivirais , Curcumina , Emulsões , Quercetina , Curcumina/administração & dosagem , Curcumina/farmacologia , Curcumina/química , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/química , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Suínos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA