Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.311
Filtrar
1.
Food Res Int ; 186: 114382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729736

RESUMO

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Assuntos
Antocianinas , Daucus carota , Luz , Antocianinas/química , Antocianinas/análise , Acilação , Daucus carota/química , Daucus carota/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Escuridão , Armazenamento de Alimentos/métodos , Espectrometria de Massas , Concentração de Íons de Hidrogênio
2.
J Oleo Sci ; 73(5): 657-664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692889

RESUMO

This present work investigated the influence of black rice anthocyanins as antioxidants on the oxidation stability of oil. Malonic acid, succinic acid and succinic anhydride were grafted on black rice anthocyanins through acylation method to improve their antioxidant activity in oil. The results from fourier transform infrared spectroscopy (FTIR) showed new absorption peaks near 1744 cm -1 and 1514 cm -1 , which implied that malonic acid, succinic acid and succinic anhydride grafted on the -OH of glucoside and rutinoside through esterification reaction and resulted that the polarity of these were reduced. Total content of anthocyanin (TAC) decreased to 166. 3 mg/g, 163.7 mg/g and 150.2 mg/g, respectively after modification with succinic acid, malonic acid and succinic anhydride. Compared with native anthocyanins, the acylation of black rice anthocyanins partially reduced its antioxidant activity. In addition, DPPH clearance of molecular modified anthocyanins decreased to 62.6% (San-An). As revealed in the oil stability through the determination of primary oxidation products (PV) and secondary oxidation products (p-AV), Sa-An, Ma-An and San-An showed stronger antioxidant activity in Schaal oven accelerated oxidation test during 12 days than native black rice anthocyanin in both corn oil and flaxseed oil. Molecular modified black rice anthocyanins are expected to be used as colorants, antioxidants, etc. in oil-rich food.


Assuntos
Antocianinas , Antioxidantes , Oryza , Oxirredução , Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/farmacologia , Oryza/química , Acilação , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731555

RESUMO

Anthocyanins are colored water-soluble plant pigments. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lowers the risk of neurodegenerative diseases. The copigmentation caused by copigments is considered an effective way to stabilize anthocyanins against adverse environmental conditions. This is attributed to the covalent and noncovalent interactions between colored forms of anthocyanins (flavylium ions and quinoidal bases) and colorless or pale-yellow organic molecules (copigments). The present work carried out a theoretical study of the copigmentation process between cyanidin and resveratrol (CINRES). We used three levels of density functional theory: M06-2x/6-31g+(d,p) (d3bj); ωB97X-D/6-31+(d,p); APFD/6-31+(d,p), implemented in the Gaussian16W package. In a vacuum, the CINRES was found at a copigmentation distance of 3.54 Å between cyanidin and resveratrol. In water, a binding free energy ∆G was calculated, rendering -3.31, -1.68, and -6.91 kcal/mol, at M06-2x/6-31g+(d,p) (d3bj), ωB97X-D/6-31+(d,p), and APFD/6-31+(d,p) levels of theory, respectively. A time-dependent density functional theory (TD-DFT) was used to calculate the UV spectra of the complexes and then compared to its parent molecules, resulting in a lower energy gap at forming complexes. Excited states' properties were analyzed with the ωB97X-D functional. Finally, Shannon aromaticity indices were calculated and isosurfaces of non-covalent interactions were evaluated.


Assuntos
Antocianinas , Teoria da Densidade Funcional , Resveratrol , Antocianinas/química , Resveratrol/química , Termodinâmica , Modelos Moleculares , Água/química
4.
Int J Biol Macromol ; 267(Pt 1): 131439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593902

RESUMO

In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.


Assuntos
Antocianinas , Carboximetilcelulose Sódica , Cucurbita , Filmes Comestíveis , Manihot , Oxirredução , Sementes , Amido , Manihot/química , Antocianinas/química , Carboximetilcelulose Sódica/química , Amido/química , Sementes/química , Cucurbita/química , Acetilação , Permeabilidade , Resistência à Tração , Embalagem de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604429

RESUMO

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Assuntos
Alginatos , Antocianinas , Colorimetria , Embalagem de Alimentos , Géis , Antocianinas/química , Embalagem de Alimentos/métodos , Alginatos/química , Géis/química , Colorimetria/métodos , Animais , Porosidade , Alimentos Marinhos/análise , Oncorhynchus mykiss , Aprendizado de Máquina
6.
Int J Biol Macromol ; 267(Pt 2): 131325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604425

RESUMO

Black rice anthocyanins (BRA) nanoparticles (NPs) were prepared using hyaluronic acid (HA), oxidized hyaluronic acid (OHA) and bovine serum albumin (BSA) to enhance the absorption and bioactivity of anthocyanins (ACNs). Results showed that HA/OHA-BSA-BRA NPs had a spherical morphology and excellent dispensability, with hydrated radius ~ 500 nm, zeta potential ~ - 30 mV, and encapsulation efficiency ~21 %. Moreover, using in vitro gastrointestinal release assay, we demonstrated that both BRA-loaded NPs exhibited effective controlled release properties of ACNs, significantly enhancing the accessibility of ACNs to the intestine. Cellular experiments showed that both two NPs had good biocompatibility and increased uptake of BRA. Furthermore, in comparison to the free BRA group, both BRA NPs groups significantly decreased the TEER value and increased the expression of tight junction proteins (Claudin 1, Occludin and ZO-1) in Caco-2 cell monolayers with LPS-induced damage. Therefore, our study demonstrated that HA/OHA-BSA-BRA NPs are promising carriers of ACNs and can effectively prevent the LPS-induced intestinal barrier injury in vitro.


Assuntos
Antocianinas , Ácido Hialurônico , Nanopartículas , Oryza , Soroalbumina Bovina , Humanos , Antocianinas/farmacologia , Antocianinas/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Nanopartículas/química , Células CACO-2 , Soroalbumina Bovina/química , Oryza/química , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Bovinos , Portadores de Fármacos/química , Função da Barreira Intestinal
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673738

RESUMO

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Assuntos
Aterosclerose , Frutas , Células Endoteliais da Veia Umbilical Humana , Photinia , Extratos Vegetais , Photinia/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Aterosclerose/tratamento farmacológico , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Antocianinas/farmacologia , Antocianinas/química , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Interleucina-6/metabolismo , Interleucina-6/genética
8.
Molecules ; 29(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38675711

RESUMO

Although much less common than anthocyanins, 3-Deoxyanthocyanidins (3-DAs) and their glucosides can be found in cereals such as red sorghum. It is speculated that their bioavailability is higher than that of anthocyanins. Thus far, little is known regarding the therapeutic effects of 3-DAs and their O-ß-D-glucosides on cancer, including prostate cancer. Thus, we evaluated their potential to decrease cell viability, to modulate the activity of transcription factors such as NFκB, CREB, and SOX, and to regulate the expression of the gene CDH1, encoding E-Cadherin. We found that 4',7-dihydroxyflavylium chloride (P7) and the natural apigeninidin can reduce cell viability, whereas 4',7-dihydroxyflavylium chloride (P7) and 4'-hydroxy-7-O-ß-D-glucopyranosyloxyflavylium chloride (P3) increase the activities of NFkB, CREB, and SOX transcription factors, leading to the upregulation of CDH1 promoter activity in PC-3 prostate cancer cells. Thus, these compounds may contribute to the inhibition of the epithelial-to-mesenchymal transition in cancer cells and prevent the metastatic activity of more aggressive forms of androgen-resistant prostate cancer.


Assuntos
Antocianinas , Caderinas , Glucosídeos , Regiões Promotoras Genéticas , Neoplasias da Próstata , Sorghum , Humanos , Caderinas/metabolismo , Caderinas/genética , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Antocianinas/farmacologia , Antocianinas/química , Sorghum/química , Glucosídeos/farmacologia , Glucosídeos/química , Células PC-3 , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/genética , NF-kappa B/metabolismo
9.
Int J Biol Macromol ; 267(Pt 2): 131563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626837

RESUMO

Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer. The results showed that the preparation of porous PLLA fiber membrane loaded with 0.2 % Cur was achieved by adjusting the spinning-related parameters, which could ensure that the composite dressing had sufficient anti-inflammatory, antibacterial and antioxidant properties. The HPAN membrane treated with alkali for 30 min had significantly enhanced liquid wetting ability, and the unidirectional transport of liquid could be achieved by simple combination with the 20 um PCPLLA fiber membrane. In addition, the 4 % loaded PCA showed more obvious color difference than the colorimetric membrane. In vivo and ex vivo experiments have demonstrated the potential of multifunctional dressings for the treatment of chronic wounds.


Assuntos
Bandagens , Curcumina , Poliésteres , Cicatrização , Concentração de Íons de Hidrogênio , Poliésteres/química , Porosidade , Animais , Cicatrização/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Resinas Acrílicas/química , Antocianinas/química , Antocianinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Brassica/química
10.
Int J Biol Macromol ; 267(Pt 2): 131649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636751

RESUMO

The colorless ammonia gas has been a significant intermediate in the industrial sector. However, prolonged exposure to ammonia causes harmful effects to organs or even death. Herein, an environmentally friendly solid-state ammonia sensor was developed utilizing colorimetric polycaprolactone-co-polylactic acid nanofibrous membrane. Pomegranate (Punica granatum L.) peel contains anthocyanin (ACN) as a naturally occurring spectroscopic probe. A mordant (potassium aluminum sulfate) is used to immobilize the anthocyanin direct dyestuff inside nanofibers, generating mordant/anthocyanin (M/ACN) coordinated complex nanoparticles. When exposed to ammonia, the color change of anthocyanin-encapsulated polycaprolactone-co-polylactic acid nanofibrous membrane from purple to transparent was examined by absorbance spectra and CIE Lab color parameters. With a quick colorimetric shift, the polycaprolactone-co-polylactic acid fabric exhibits a detection limit of 5-150 mg/L. The absorbance spectra showed a hypsochromic shift when exposed to ammonia, displaying an absorption shift from 559 nm to 391 nm with an isosbestic point of 448 nm. Scanning electron microscopy (SEM) images revealed that the polycaprolactone-co-polylactic acid nanofibers had a diameter of 75-125 nm, whereas transmission electron microscopy (TEM) images revealed that M/ACN nanoparticles exhibited diameters of 10-20 nm.


Assuntos
Amônia , Antocianinas , Nanofibras , Poliésteres , Nanofibras/química , Poliésteres/química , Antocianinas/química , Amônia/química , Amônia/análise , Gases/química , Colorimetria
11.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675555

RESUMO

Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.


Assuntos
Antocianinas , Análise de Alimentos , Antocianinas/análise , Antocianinas/química , Cromatografia Líquida de Alta Pressão/métodos , Análise de Alimentos/métodos , Espectrometria de Massas/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
12.
Redox Biol ; 72: 103133, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565068

RESUMO

Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.


Assuntos
Antocianinas , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Antocianinas/farmacologia , Antocianinas/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Proteínas PrPSc/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Talanta ; 274: 125997, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569369

RESUMO

Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.


Assuntos
Antocianinas , Técnicas Eletroquímicas , Glucosídeos , Medições Luminescentes , Estruturas Metalorgânicas , Impressão Molecular , Rutênio , Dióxido de Silício , Antocianinas/química , Antocianinas/análise , Dióxido de Silício/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Rutênio/química , Glucosídeos/química , Glucosídeos/análise , Estruturas Metalorgânicas/química , Limite de Detecção , Polímeros Molecularmente Impressos/química
14.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567751

RESUMO

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Assuntos
Antocianinas , Quitosana , Quitosana/análogos & derivados , Hepatócitos , Nanopartículas , Ácido Palmítico , Quitosana/química , Antocianinas/química , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Ácido Palmítico/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Hep G2
15.
Int J Biol Macromol ; 266(Pt 2): 131308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569996

RESUMO

In this work, the acylated anthocyanin (Ca-An) was prepared by enzymatic modification of black rice anthocyanin with caffeic acid, and the binding mechanism of Ca-An to soybean protein isolate (SPI) was investigated by experiments and computer simulation to expand the potential application of anthocyanin in food industry. Multi-spectroscopic studies revealed that the stable binding of Ca-An to SPI induced the folding of protein polypeptide chain, which transformed the secondary structure of SPI trended to be flexible. The microenvironment of protein was transformed from hydrophobic to hydrophilic, while tyrosine played dominant role in quenching process. The binding sites and forces of the complexes were determined by computer simulation for further explored. The protein conformation of the 7S and 11S binding regions to Ca-An changed, and the amino acid microenvironment shifted to hydrophilic after binding. The results showed that more non-polar amino acids existed in the binding sites, while in binding process van der Waals forces and hydrogen bonding played a major role hydrophobicity played a minor role. Based on MM-PBSA analysis, the binding constants of 7S-Ca-An and 11S-Ca-An were 0.518 × 106 mol-1 and 5.437 × 10-3 mol-1, respectively. This information provides theoretical guidance for further studying the interaction between modified anthocyanins and biomacromolecules.


Assuntos
Antocianinas , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas de Soja , Antocianinas/química , Antocianinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Sítios de Ligação , Solubilidade , Ligação de Hidrogênio
16.
Food Chem ; 449: 139222, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583398

RESUMO

Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.


Assuntos
Ipomoea batatas , Ipomoea batatas/química , Animais , Embalagem de Alimentos , Antocianinas/análise , Antocianinas/química , Amido/química , Amido/análise , Cor
17.
Int J Biol Macromol ; 266(Pt 2): 131077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531525

RESUMO

This study aimed to encapsulate Malva sylvestris extract (MSE) into chitosan-carrageenan (CH-KC) fibers using the electrospinning technique and monitor the freshness of silver carp fillets during the refrigerated storage conditions for 8 days. The CH-KC + MSE 4 % fiber mats were red at pH values lower than 3, purple at pH 4-6, dark blue at pH 7, green at pH 8-10, and brown at pH 11-12. The tensile strength, elongation at break, water vapor permeability, oxygen transmission rate, moisture content, and water solubility of fabricated fiber mats were 7.71-11.02 MPa, 13.12 %-30.00 %, 7.35-20.01 × 10-4 g mm/m2 h Pa, 3.81-8.23 cm3/m2 h, 15.74 %-27.34 %, and 3.90 %-7.56 %, respectively. Regarding the potential application of a fabricated indicator for freshness monitoring of silver carp fillets, total viable count, psychrotrophic bacterial count, pH, and total volatile basic nitrogen reached 8.91 log CFU/g, 8.03 log CFU/g, 8.10, and 40.18 mg N/100 g at the end of the study, respectively. Meanwhile, the CH-KC + MSE 4 % fiber mat color changed from white to green. These findings suggest that CH-KC + MSE 4 % fiber mats can be further utilized in the food industry to control the freshness of refrigerated silver carp fillets.


Assuntos
Antocianinas , Carragenina , Quitosana , Embalagem de Alimentos , Malva , Embalagem de Alimentos/métodos , Carragenina/química , Quitosana/química , Antocianinas/química , Malva/química , Permeabilidade , Concentração de Íons de Hidrogênio , Carpas , Resistência à Tração , Animais , Solubilidade , Fenômenos Mecânicos , Materiais Inteligentes/química
18.
Int J Biol Macromol ; 263(Pt 1): 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428758

RESUMO

Anthocyanins (ACNs) are natural compounds with potential applications due to their colorimetric response to pH. Due to their sensitivity to various environmental factors, nanoencapsulation with biopolymers is a successful strategy for stabilizing ACNs. In this work ACNs were extracted from grape skins and encapsulated into chitosan (CS) nanoparticles by ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent. CS nanoparticles loaded with ACNs had particle sizes between 291 and 324 nm and polydispersity index around 0.3. The encapsulation efficiency of ACNs was approximately 60 %; and encapsulated anthocyanins (ACN-NPs) exhibited color change properties under different pH conditions. pH-sensitive labels based on polyvinyl alcohol (PVA) were prepared by the casting method. The effect of incorporating ACN-NPs on the physical, structural, and pH-sensitive properties of PVA labels was evaluated, and its application as shrimp freshness indicator was studied. The nanoencapsulation protected ACNs against heat and light treatments, preserving the original purple color. When applying the label, visible changes from red to blue until reaching yellow were observed with the change in the quality of the shrimp at the refrigeration temperature. The results suggest that PVA labels containing ACNs encapsulated in C-NPs can be used as smart packaging labels in the food industry.


Assuntos
Quitosana , Nanopartículas , Vitis , Quitosana/química , Álcool de Polivinil/química , Antocianinas/química , Nanopartículas/química , Extratos Vegetais/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio
19.
J Agric Food Chem ; 72(12): 6327-6338, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484116

RESUMO

The present work aimed to characterize the phenolic and antioxidant content of the Argentinian purple maize "Moragro" cultivar. Additionally, the INFOGEST simulated in vitro digestion model was used to establish the effect of digestion on bioactive compounds. Finally, digestion samples were used to treat Caco-2 cells in the transwell model to better understand their bioavailability. Twenty-six phenolic compounds were found in purple maize cv. "Moragro", 15 nonanthocyanins and 11 anthocyanins. Several compounds were identified in maize for the first time, such as pyrogallol, citric acid, gallic acid, kaempferol 3-(6″-ferulylglucoside), and kaempferol 3-glucuronide. Anthocyanins accounted for 24.9% of total polyphenols, with the predominant anthocyanin being cyanidin-3-(6″ malonylglucoside). Catechin-(4,8)-cyanidin-3,5-diglucoside and catechin-(4,8)-cyanidin-3-malonylglucoside-5-glucoside were detected as characteristics of this American maize variety. Total polyphenol content (TPC; by the Folin-Ciocalteu method), HPLC-DAD/MSMS, and antioxidant activity [by DPPH and ferric-reducing antioxidant power (FRAP)] were evaluated throughout in vitro digestion. TPC, DPPH, and FRAP results were 2.71 mg gallic acid equivalents (GAE)/g, 24 µmol Trolox equiv/g, and 22 µmol Trolox eq/g, respectively. The in vitro digestion process did not cause significant differences in TPC. However, the antioxidant activity was significantly decreased. Moreover, the bioavailability of anthocyanins was studied, showing that a small fraction of polyphenols in their intact form was conserved at the end of digestion. Finally, a protective effect of digested maize polyphenols was observed in the Caco-2 cell viability. The results suggest that "Moragro" purple maize is a good source of bioavailable anthocyanins in the diet and an interesting source of this group of compounds for the food industry.


Assuntos
Antocianinas , Catequina , Humanos , Antocianinas/química , Zea mays/química , Antioxidantes , Células CACO-2 , Quempferóis , Cromatografia Líquida de Alta Pressão , Fenóis/química , Polifenóis/análise , Ácido Gálico , Digestão
20.
Food Chem ; 448: 139079, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520989

RESUMO

Esterification of anthocyanins with saturated fatty acids have been widely investigated, while that with unsaturated fatty acids is little understood. In this study, crude extract (purity âˆ¼ 35 %) of cyanidin-3-O-glucoside (C3G) from black bean seed coat was utilized as reaction substrate, and enzymatically acylated with unsaturated fatty acid (oleic acid). Optimization of various reaction parameters finally resulted in the highest acylation rate of 54.3 %. HPLC-MS/MS and NMR analyses elucidated the structure of cyanidin-3-O-glucoside-oleic acid ester (C3G-OA) to be cyanidin-3-O-(6″-octadecene)-glucoside. Introduction of oleic acid into C3G improved the lipophilicity, antioxidant ability, and antibacterial activity. Further, the color and substance stability analyses showed that the susceptibility of C3G and C3G-OA to different thermal, peroxidative, and illuminant treatments were highly pH dependent, which suggested individual application guidelines. Moreover, C3G-OA showed lower toxicity to normal cell (QSG-7701) and better inhibitory effect on the proliferation of HepG2 cells than C3G, which indicated its potential anti-tumor bioactivity.


Assuntos
Antocianinas , Ácido Oleico , Antocianinas/química , Humanos , Ácido Oleico/química , Esterificação , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/farmacologia , Células Hep G2 , Phaseolus/química , Antibacterianos/química , Antibacterianos/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA