Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.490
Filtrar
1.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Antraquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química , Biologia Computacional
2.
J Med Life ; 17(1): 87-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737655

RESUMO

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Assuntos
Amidas , Antraquinonas , Inibidores Enzimáticos , Lactoilglutationa Liase , Simulação de Acoplamento Molecular , Antraquinonas/farmacologia , Antraquinonas/química , Humanos , Amidas/química , Amidas/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668646

RESUMO

Background. Actinobacillus pleuropneumoniae, a member of the Pasteurellaceae family, is known for its highly infectious nature and is the primary causative agent of infectious pleuropneumonia in pigs. This disease poses a considerable threat to the global pig industry and leads to substantial economic losses due to reduced productivity, increased mortality rates, and the need for extensive veterinary care and treatment. Due to the emergence of multi-drug-resistant strains, Chinese herbal medicine is considered one of the best alternatives to antibiotics due to its unique mechanism of action and other properties. As a type of Chinese herbal medicine, Rhein has the advantages of a wide antibacterial spectrum and is less likely to develop drug resistance, which can perfectly solve the limitations of current antibacterial treatments.Methods. The killing effect of Rhein on A. pleuropneumoniae was detected by fluorescence quantification of differential expression changes of key genes, and scanning electron microscopy was used to observe the changes in A. pleuropneumoniae status after Rhein treatment. Establishing a mouse model to observe the treatment of Rhein after A. pleuropneumoniae infection.Results. Here, in this study, we found that Rhein had a good killing effect on A. pleuropneumoniae and that the MIC was 25 µg ml-1. After 3 h of action, Rhein (4×MIC) completely kills A. pleuropneumoniae and Rhein has good stability. In addition, the treatment with Rhein (1×MIC) significantly reduced the formation of bacterial biofilms. Therapeutic evaluation in a murine model showed that Rhein protects mice from A. pleuropneumoniae and relieves lung inflammation. Quantitative RT-PCR (Quantitative reverse transcription polymerase chain reaction is a molecular biology technique that combines both reverse transcription and polymerase chain reaction methods to quantitatively detect the amount of a specific RNA molecule) results showed that Rhein treatment significantly downregulated the expression of the IL-18 (Interleukin refers to a class of cytokines produced by white blood cells), TNF-α, p65 and p38 genes. Along with the downregulation of genes such as IL-18, it means that Rhein has an inhibitory effect on the expression of these genes, thereby reducing the activation of inflammatory cells and the production of inflammatory mediators. This helps reduce inflammation and protects tissue from further damage.Conclusions. This study reports the activity of Rhein against A. pleuropneumoniae and its mechanism, and reveals the ability of Rhein to treat A. pleuropneumoniae infection in mice, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antraquinonas , Antibacterianos , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Suínos , Modelos Animais de Doenças , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
4.
Arch Microbiol ; 206(5): 216, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619638

RESUMO

Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.


Assuntos
Agricultura , Aspergillus , Humanos , Antraquinonas/farmacologia , Benzamidas
5.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658095

RESUMO

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Assuntos
Antraquinonas , Proliferação de Células , Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
Acta Biomater ; 180: 383-393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570106

RESUMO

Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.


Assuntos
Antraquinonas , Ferroptose , Imunoterapia , Antraquinonas/química , Antraquinonas/farmacologia , Animais , Imunoterapia/métodos , Humanos , Linhagem Celular Tumoral , Camundongos , Ferroptose/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Ácido Fólico/química , Ácido Fólico/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Apoptose/efeitos dos fármacos
7.
Bioresour Technol ; 400: 130699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615966

RESUMO

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.


Assuntos
Cromo , Desnitrificação , Enxofre , Cromo/metabolismo , Enxofre/farmacologia , Enxofre/química , Transporte de Elétrons , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Thiobacillus/metabolismo , Antraquinonas/farmacologia , Cisteína/farmacologia , Cisteína/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124313, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676984

RESUMO

DNA is a key target for anticancer and antimicrobial drugs. Assessing the bioactivity of compounds involves in silico and instrumental studies to determine their affinity for biomolecules like DNA. This study explores the potential of the switchSense technique in rapidly evaluating compound bioactivity towards DNA. By combining switchSense with computational methods and UV-Vis spectrophotometry, various bioactive compounds' interactions with DNA were analyzed. The objects of the study were: netropsin (as a model compound that binds in the helical groove), as well as derivatives of pyrazine (PTCA), sulfonamide (NbutylS), and anthraquinone (AQ-NetOH). Though no direct correlation was found between switchSense kinetics and binding modes, this research suggests the technique's broader utility in assessing new compounds' interactions with DNA. used as analytes whose interactions with DNA have not been yet fully described in the literature.


Assuntos
Antraquinonas , DNA , Espectrofotometria Ultravioleta , DNA/química , DNA/metabolismo , Antraquinonas/química , Antraquinonas/farmacologia , Netropsina/química , Netropsina/metabolismo , Netropsina/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/metabolismo , Cinética , Simulação de Acoplamento Molecular
9.
J Dermatol Sci ; 114(1): 44-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508975

RESUMO

BACKGROUND: Bullous pemphigoid (BP) is an antibody-mediated blistering disease predominantly affecting the elderly. The pathogenesis involves both complement-dependent and complement-independent mechanisms. The therapeutic potential of targeting complement-independent mechanism has not yet been determined. The mainstay of treatment, corticosteroid, has many side effects, indicating the needs of better treatments. OBJECTIVE: We tempted to establish an in vitro model of BP which resembles complement-independent mechanism and to examine the therapeutic potential of a novel anti-inflammatory agent, diacerein. METHODS: Cultured HaCaT cells were treated with purified antibodies from BP patients, with or without diacerein to measure the cell interface presence of BP180, protein kinase C, and the production of proinflammatory cytokines. An open-label, randomized, phase 2 trial was conducted to compare topical diacerein and clobetasol ointments in patients with mild-to-moderate BP (NCT03286582). RESULTS: The reduced presentation of BP180 at cell interface after treating with BP autoantibodies was noticed in immunofluorescence and western blotting studies. The phenomenon was restored by diacerein. Diacerein also reduced the autoantibody-induced increase of pro-inflammatory cytokines. Reciprocal changes of BP180 and protein kinase C at the cell interface were found after treating with BP autoantibodies. This phenomenon was also reversed by diacerein in a dose-dependent manner. The phase 2 trial showed that topical diacerein reduced the clinical symptoms which were comparable to those of topical clobetasol. CONCLUSION: Diacerein inhibited BP autoantibody-induced reduction of BP180 and production of proinflammatory cytokines in vitro and showed therapeutic potential in patients with BP. It is a novel drug worthy of further investigations.


Assuntos
Antraquinonas , Autoanticorpos , Citocinas , Colágenos não Fibrilares , Penfigoide Bolhoso , Humanos , Penfigoide Bolhoso/imunologia , Penfigoide Bolhoso/tratamento farmacológico , Penfigoide Bolhoso/patologia , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Autoanticorpos/imunologia , Autoanticorpos/sangue , Colágenos não Fibrilares/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Colágeno Tipo XVII , Autoantígenos/imunologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Clobetasol/uso terapêutico , Clobetasol/farmacologia , Idoso , Masculino , Células HaCaT , Feminino , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C/imunologia , Proteínas do Sistema Complemento/imunologia , Linhagem Celular , Resultado do Tratamento , Queratinócitos/imunologia , Queratinócitos/efeitos dos fármacos
10.
J Nat Prod ; 87(4): 966-975, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38441877

RESUMO

Ten new (1-10) and nine known (11-19) austocystins, along with four known anthraquinones (20-23), were isolated from the culture of Aspergillus ustus NRRL 5856 by bioactivity-guided fractionation. The structures of the new compounds were elucidated by spectroscopic data analysis, X-ray crystallographic study, the modified Mosher's method, [Rh2(OCOCF3)4]-induced ECD spectral analysis, and comparison of the experimental ECD spectra with those of the similar analogues. Compounds 1-8 represent the first examples of austocystins with a C-4' oxygenated substitution. The absolute configuration of 1″-hydroxy austocystin D (11) was determined by single-crystal X-ray diffraction and consideration of its biosynthetic origin. Compounds 5, 9, and 11 exhibited significant inhibitory effects against the proliferation of ConA-induced T cells with IC50 values of 1.1, 1.0, and 0.93 µM, respectively. Furthermore, these compounds suppressed the expression of IL-6 in a dose-dependent manner. Compounds 10-12 and 14 showed pronounced cytotoxicities against MCF-7 with IC50 values of 3.9, 1.3, 0.46, and 2.3 µM, respectively.


Assuntos
Aspergillus , Imunossupressores , Aspergillus/química , Humanos , Imunossupressores/farmacologia , Imunossupressores/química , Imunossupressores/isolamento & purificação , Estrutura Molecular , Cristalografia por Raios X , Interleucina-6/metabolismo , Antraquinonas/farmacologia , Antraquinonas/química , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Linfócitos T/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos
11.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530134

RESUMO

Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.


Assuntos
Antracenos , Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans , Itraconazol , Virulência , Antraquinonas/farmacologia , Biofilmes
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542320

RESUMO

In this study, we designed two series of novel anthraquinone-based benzenesulfonamide derivatives and their analogues as potential carbonic anhydrase inhibitors (CAIs) and evaluated their inhibitory activities against off-target human carbonic anhydrase II (hCA II) isoform and tumor-associated human carbonic anhydrase IX (hCA IX) isoform. Most of these compounds exhibited good inhibitory activities against hCA II and IX. The compounds that exhibited the best hCA inhibition were further studied against the MDA-MB-231, MCF-7, and HepG2 cell lines under hypoxic and normoxic conditions. Additionally, the compounds exhibiting the best antitumor activity were subjected to apoptosis and mitochondrial membrane potential assays, which revealed a significant increase in the percentage of apoptotic cells and a notable decrease in cell viability. Molecular docking studies were performed to demonstrate the presence of numerous hydrogen bonds and hydrophobic interactions between the compounds and the active site of hCA. Absorption, distribution, metabolism, excretion (ADME) predictions showed that all of the compounds had good pharmacokinetic and physicochemical properties.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/química , Simulação de Acoplamento Molecular , Sulfonamidas/química , Anidrase Carbônica IX/metabolismo , Isoformas de Proteínas/metabolismo , Antraquinonas/farmacologia
13.
J Ethnopharmacol ; 328: 118028, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492792

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Species of Vismia (Hypericaceae), known in Brazil as "lacre", are commonly used in traditional Amazonian medicine for the treatment of skin lesions, including those caused by Leishmania infection. AIM OF THE STUDY: Hexane extracts from the leaves of Vismia cayennensis, V. gracilis, V. sandwithii and V. guianensis, as well as from the fruits of the latter, in addition to the anthraquinones vismiaquinone, physcion and chrysophanol isolated from these species were explored for their anti-promastigote and anti-amastigote activity on Leishmania amazonensis. MATERIALS AND METHODS: Extracts were prepared by static maceration with n-hexane. The compounds, isolated by chromatographic techniques, were identified by spectroscopic methods (1H and 13C NMR). Promastigotes of L.amazonensis were incubated with hexane extracts (1-50 µg/mL) or anthraquinones (1-50 µM) and the parasite survival analyzed. The action of compounds on reactive oxygen species (ROS) production, mitochondrial membrane potential, and membrane integrity of promastigotes were evaluated by flow cytometer, and the cytotoxicity on mammalian cells using MTT assay. Furthermore, the activity of compounds against amastigotes and nitric oxide production were also investigated. RESULTS: Vismiaquinone and physcion were obtained from the leaves of V. guianensis. Physcion, as well as chrysophanol, were isolated from V. sandwithii. Vismia cayennensis and V. gracilis also showed vismiaquinone, compound detected in lower quantity in the fruits of V. guianensis. All extracts were active against the parasite, corroborating the popular use. The greatest activity against promastigotes was achieved with V. guianensis extract (IC50 4.3 µg/mL), precisely the most used Vismia species for treating cutaneous leishmaniasis. Vismiaquinone and physcion exhibited relevant activity with IC50 12.6 and 2.6 µM, respectively. Moreover, all extracts and anthraquinones tested induced ROS production, mitochondrial dysfunction, membrane disruption and were able to kill intracellular amastigote forms, being worthy of further in vivo studies as potential antileishmanial drugs. CONCLUSIONS: The overall data achieved in the current investigation scientifically validate the traditional use of Vismia species, mainly V. guianensis, as an anti-Leishmania agent. Furthermore, the promising results presented here indicate species of Vismia as potentially useful resources of Brazilian flora for the discovery of therapeutic solutions for neglected diseases.


Assuntos
Antiprotozoários , Clusiaceae , Emodina/análogos & derivados , Leishmaniose Cutânea , Leishmaniose , Plantas Medicinais , Animais , Camundongos , Hexanos , Espécies Reativas de Oxigênio , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB C , Mamíferos
14.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38493905

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Assuntos
Éteres Metílicos , Morinda , Rubiaceae , Humanos , Camundongos , Animais , Morinda/química , Rubiaceae/química , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Quercetina/análise , Raízes de Plantas/química , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Glicosídeos/química , Inflamação/tratamento farmacológico , Éteres Metílicos/análise , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade
15.
Drug Des Devel Ther ; 18: 597-612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436040

RESUMO

Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01µg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.


Assuntos
Agaricales , Antineoplásicos , Ciclopentanos , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cinética , Antibacterianos/farmacologia , Antraquinonas/farmacologia
16.
Sci Rep ; 14(1): 5589, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453990

RESUMO

The utilization of plants for the production of metallic nanoparticles is gaining significant attention in research. In this study, we conducted phytochemical screening of Alstonia scholaris (A. scholaris) leaves extracts using various solvents, including chloroform, ethyl acetate, n-hexane, methanol, and water. Our findings revealed higher proportions of flavonoids and alkaloids in both solvents compared to other phytochemical species. In the methanol, extract proteins, anthraquinone and reducing sugar were not detected. On the other hand, the aqueous extract demonstrated the presence of amino acids, reducing sugar, phenolic compounds, anthraquinone, and saponins. Notably, ethyl acetate and chloroform extracts displayed the highest levels of bioactive compounds among all solvents. Intrigued by these results, we proceeded to investigate the antibacterial properties of the leaf extracts against two major bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). All extracts exhibited significant zones of inhibition against both bacterial isolates, with S. aureus showing higher susceptibility compared to E. coli. Notably, the methanol extract displayed the most potent I hibitory effect against all organisms. Inspired by the bioactivity of the methanol extract, we employed it as a plant-based material for the green synthesis of copper nanoparticles (Cu-NPs). The synthesized Cu-NPs were characterized using Fourier infrared spectroscopy (FT-IR), UV-visible spectroscopic analysis, and scanning electron microscopy (SEM). The observed color changes confirmed the successful formation of Cu-NPs, while the FTIR analysis matched previously reported peaks, further verifying the synthesis. The SEM micrographs indicated the irregular shapes of the surface particles. From the result obtained by energy dispersive X-ray spectroscopic analysis, Cu has the highest relative abundance of 67.41 wt%. Confirming the purity of the Cu-NPs colloid. These findings contribute to the growing field of eco-friendly nanotechnology and emphasize the significance of plant-mediated approaches in nanomaterial synthesis and biomedical applications.


Assuntos
Acetatos , Alstonia , Anti-Infecciosos , Nanopartículas Metálicas , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Metanol/farmacologia , Clorofórmio/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Solventes/farmacologia , Açúcares/farmacologia , Antraquinonas/farmacologia , Testes de Sensibilidade Microbiana
17.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
18.
Adv Sci (Weinh) ; 11(17): e2307865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355309

RESUMO

Although natural products are essential sources of small-molecule antitumor drugs, some can exert substantial toxicities, limiting their clinical utility. Anthraquinone-fused enediyne natural products are remarkably potent antitumor drug candidates, and uncialamycin and tiancimycin (TNM) A are under development as antibody-drug conjugates. Herein, a novel drug delivery system is introduced for TNM A using anti-human epidermal growth factor receptor 2 (HER2) immunoliposomes (ILs). Trastuzumab-coated TNM A-loaded ILs (HER2-TNM A-ILs) is engineered with an average particle size of 182.8 ± 2.1 nm and a zeta potential of 1.75 ± 0.12 mV. Compared with liposomes lacking trastuzumab, HER2-TNM A-ILs exhibited selective toxicity against HER2-positive KPL-4 and SKBR3 cells. Coumarin-6, a fluorescent TNM A surrogate, is encapsulated within anti-HER2 ILs; the resultant ILs have enhanced cellular uptake in KPL-4 and SKBR3 cells when compared with control liposomes. Furthermore, ILs loaded with more Cy5.5 accumulated in KPL-4 mouse tumors. A single HER2-TNM A-IL dose (0.02 mg kg-1) suppressed the growth of HER2-positive KPL-4 mouse tumors without apparent toxicity. This study not only provides a straightforward method for the effective delivery of TNM A against HER2-positive breast tumors but also underscores the potential of IL-based drug delivery systems when employing highly potent cytotoxins as payloads.


Assuntos
Antraquinonas , Antineoplásicos , Sistemas de Liberação de Medicamentos , Enedi-Inos , Lipossomos , Receptor ErbB-2 , Animais , Camundongos , Enedi-Inos/química , Enedi-Inos/farmacologia , Receptor ErbB-2/imunologia , Antraquinonas/farmacologia , Antraquinonas/administração & dosagem , Humanos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Feminino , Modelos Animais de Doenças , Trastuzumab/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia
19.
Chem Biol Interact ; 392: 110928, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423379

RESUMO

There is an increasing demand for anticancer agent in treating colorectal cancer (CRC) with frequently mutated TP53 and KRAS genes. Phytochemical compounds are suitable as chemoprevention for CRC since dietary factor is a major risk factor. Anthraquinones from Morinda citrifolia L. were previously reported with various pharmacological properties. Various in vitro experiments were conducted to investigate the effects of two anthraquinones: damnacanthal and morindone on the cell proliferation, cell cycle, apoptosis, gene expression and protein expression in two CRC cells: HCT116 and HT29. Real-time monitoring of CRC cells showed that both anthraquinones exerted significant anti-proliferative effects in a dose- and time-dependent manner. Next, cell cycle analysis revealed an increase in the percentage of CRC cells in the G1 phase under anthraquinones treatment. Fluorescence microscopy also showed an increment of apoptotic cells under anthraquinones' treatment. siRNA transfection was conducted to evaluate the mediating effect of gene knockdown on mutated TP53 and KRAS in CRC cells. Before transfection, qRT-PCR analysis showed that only morindone downregulated the gene expression of mutated TP53 and KRAS and then further downregulated them after transfection. Both damnacanthal and morindone treatments further downregulated the expression of these two genes but upregulated at the protein expression level. Furthermore, gene knockdown also sensitised CRC cells to both damnacanthal and morindone treatments, resulting in lowered IC50 values. The accumulation of cells at the G1 phase was reduced after gene knockdown but increased after damnacanthal and morindone treatments. In addition, gene knockdown has increased the number of apoptotic cells in both cell lines and further increment was observed after anthraquinone treatment. In conclusion, morindone could be a competitive therapeutic agent in CRC by exhibiting multiple mechanism of anti-cancer actions.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Antraquinonas/farmacologia , Antraquinonas/química , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mutação , Proteína Supressora de Tumor p53/genética
20.
J Nat Prod ; 87(4): 855-860, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412225

RESUMO

Two new compounds, kinanthraquinone C (1) and kinanthraquinone D (2), were isolated along with two known compounds, kinanthraquinone (3) and kinanthraquinone B (4), produced by the heterologous expression of the kiq biosynthetic gene cluster and its pathway-specific regulator, kiqA, in Streptomyces lividans TK23. The chemical structures of compounds 1 and 2 were determined using mass spectrometry and nuclear magnetic resonance analyses. To examine a biosynthetic pathway of compounds 1 and 2, incubation experiments were conducted using S. lividans TK23 to supply the compounds 3 and 4. These experiments indicated that compounds 3 and 4 were converted to compounds 2 and 1, respectively, by the endogenous enzymes of S. lividans TK23. Compounds 2, 3, and 4 had antimalarial activities at half-maximal inhibitory concentration values of 0.91, 1.2, and 15 µM, respectively, without cytotoxicity up to 30 µM.


Assuntos
Antraquinonas , Antimaláricos , Streptomyces lividans , Antimaláricos/farmacologia , Antimaláricos/química , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Estrutura Molecular , Antraquinonas/farmacologia , Antraquinonas/química , Plasmodium falciparum/efeitos dos fármacos , Biotransformação , Família Multigênica , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA