Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 817, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965271

RESUMO

Ice thickness is arguably one of the most important factors limiting the resolution of protein structures determined by cryo-electron microscopy (cryo-EM). The amorphous atomic structure of the ice that stabilizes and protects biological samples in cryo-EM grids also imprints some additional noise in cryo-EM images. Ice that is too thick jeopardizes the success of particle picking and reconstruction of the biomolecule in the worst case and, at best, deteriorates eventual map resolution. Minimizing the thickness of the ice layer and thus the magnitude of its noise contribution is thus imperative in cryo-EM grid preparation. In this paper we introduce MeasureIce, a simple, easy to use ice thickness measurement tool for screening and selecting acquisition areas of cryo-EM grids. We show that it is possible to simulate thickness-image intensity look-up tables, also usable in SerialEM and Leginon, using elementary scattering physics and thereby adapt the tool to any microscope without time consuming experimental calibration. We benchmark our approach using two alternative techniques: the "ice channel" technique and tilt-series tomography. We also demonstrate the utility of ice thickness measurement for selecting holes in gold grids containing an Equine apoferritin sample, achieving a 1.88 Ångstrom resolution in subsequent refinement of the atomic map.


Assuntos
Microscopia Crioeletrônica/normas , Gelo , Proteínas/ultraestrutura , Animais , Apoferritinas/química , Apoferritinas/ultraestrutura , Benchmarking , Microscopia Crioeletrônica/métodos , Cavalos , Gelo/normas , Proteínas/química , Tomografia/métodos
2.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1077-1083, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342280

RESUMO

The use of cryo-EM continues to expand worldwide and calls for good-quality standard proteins with simple protocols for their production. Here, a straightforward expression and purification protocol is presented that provides an apoferritin, bacterioferritin B (BfrB), from Mycobacterium tuberculosis with high yield and purity. A 2.12 Šresolution cryo-EM structure of BfrB is reported, showing the typical cage-like oligomer constituting of 24 monomers related by 432 symmetry. However, it also contains a unique C-terminal extension (164-181), which loops into the cage region of the shell and provides extra stability to the protein. Part of this region was ambiguous in previous crystal structures but could be built within the cryo-EM map. These findings and this protocol could serve the growing cryo-EM community in characterizing and pushing the limits of their electron microscopes and workflows.


Assuntos
Ferritinas/química , Mycobacterium tuberculosis/metabolismo , Apoferritinas/química , Apoferritinas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Grupo dos Citocromos b/química , Grupo dos Citocromos b/ultraestrutura , Ferritinas/ultraestrutura , Conformação Proteica
3.
Nat Commun ; 12(1): 3702, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140491

RESUMO

Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.


Assuntos
Apoferritinas/química , Bioengenharia/métodos , Citoesqueleto/química , DNA/química , Ferritinas/química , Nanoestruturas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/ultraestrutura , Ferritinas/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Molecular
4.
Methods Mol Biol ; 2305: 229-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33950393

RESUMO

In this chapter, we present an overview of a standard protocol to achieve structure determination at high resolution by Single Particle Analysis cryogenic Electron Microscopy using apoferritin as a standard sample. The purified apoferritin is applied to a glow-discharged support and then flash frozen in liquid ethane. The prepared grids are loaded into the electron microscope and checked for particle spreading and ice thickness. The microscope alignments are performed and the data collection session is setup for an overnight data collection. The collected movies containing two-dimensional images of the apoferritin sample are then processed to obtain a high-resolution three-dimensional reconstruction.


Assuntos
Apoferritinas/química , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Manejo de Espécimes/métodos , Animais , Apoferritinas/ultraestrutura , Equidae , Congelamento , Imageamento Tridimensional , Fluxo de Trabalho
6.
Nature ; 587(7832): 157-161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087927

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) is a powerful method for solving the three-dimensional structures of biological macromolecules. The technological development of transmission electron microscopes, detectors and automated procedures in combination with user-friendly image processing software and ever-increasing computational power have made cryo-EM a successful and expanding technology over the past decade1. At resolutions better than 4 Å, atomic model building starts to become possible, but the direct visualization of true atomic positions in protein structure determination requires much higher (better than 1.5 Å) resolution, which so far has not been attained by cryo-EM. The direct visualization of atom positions is essential for understanding the mechanisms of protein-catalysed chemical reactions, and for studying how drugs bind to and interfere with the function of proteins2. Here we report a 1.25 Å-resolution structure of apoferritin obtained by cryo-EM with a newly developed electron microscope that provides, to our knowledge, unprecedented structural detail. Our apoferritin structure has almost twice the 3D information content of the current world record reconstruction (at 1.54 Å resolution3). We can visualize individual atoms in a protein, see density for hydrogen atoms and image single-atom chemical modifications. Beyond the nominal improvement in resolution, we also achieve a substantial improvement in the quality of the cryo-EM density map, which is highly relevant for using cryo-EM in structure-based drug design.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/normas , Hidrogênio/química , Microscopia Crioeletrônica/métodos , Desenho de Fármacos , Humanos , Modelos Moleculares , Controle de Qualidade
7.
Nature ; 587(7832): 152-156, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087931

RESUMO

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Receptores de GABA-A/química , Receptores de GABA-A/ultraestrutura , Imagem Individual de Molécula/métodos , Animais , Microscopia Crioeletrônica/normas , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/ultraestrutura , Imagem Individual de Molécula/normas
8.
Nanotechnology ; 31(48): 485709, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931463

RESUMO

Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg-1 body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.


Assuntos
Apoferritinas/análise , Corantes Fluorescentes/análise , Ferro/análise , Nanopartículas/análise , Imagem Óptica/métodos , Óxidos/análise , Animais , Apoferritinas/genética , Apoferritinas/toxicidade , Apoferritinas/ultraestrutura , Corantes Fluorescentes/toxicidade , Expressão Gênica , Humanos , Ferro/toxicidade , Nanopartículas/ultraestrutura , Óxidos/toxicidade , Ratos Sprague-Dawley , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/ultraestrutura , Saccharomycetales/genética
9.
Structure ; 28(11): 1238-1248.e4, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814033

RESUMO

A host of new technologies are under development to improve the quality and reproducibility of cryoelectron microscopy (cryoEM) grid preparation. Here we have systematically investigated the preparation of three macromolecular complexes using three different vitrification devices (Vitrobot, chameleon, and a time-resolved cryoEM device) on various timescales, including grids made within 6 ms (the fastest reported to date), to interrogate particle behavior at the air-water interface for different timepoints. Results demonstrate that different macromolecular complexes can respond to the thin-film environment formed during cryoEM sample preparation in highly variable ways, shedding light on why cryoEM sample preparation can be difficult to optimize. We demonstrate that reducing time between sample application and vitrification is just one tool to improve cryoEM grid quality, but that it is unlikely to be a generic "silver bullet" for improving the quality of every cryoEM sample preparation.


Assuntos
Apoferritinas/ultraestrutura , Chaperonina 60/ultraestrutura , Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Proteínas Mitocondriais/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Ar/análise , Animais , Biomarcadores/metabolismo , Microscopia Crioeletrônica/instrumentação , Escherichia coli/química , Expressão Gênica , Cavalos , Humanos , Imageamento Tridimensional/instrumentação , Propriedades de Superfície , Fatores de Tempo , Vitrificação , Água/química
11.
PLoS One ; 15(5): e0232540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374767

RESUMO

Here we present the structure of mouse H-chain apoferritin at 2.7 Å (FSC = 0.143) solved by single particle cryogenic electron microscopy (cryo-EM) using a 200 kV device, the Thermo Fisher Glacios®. This is a compact, two-lens illumination system with a constant power objective lens, without any energy filters or aberration correctors, often thought of as a "screening cryo-microscope". Coulomb potential maps reveal clear densities for main chain carbonyl oxygens, residue side chains (including alternative conformations) and bound solvent molecules. We used a quasi-crystallographic reciprocal space approach to fit model coordinates to the experimental cryo-EM map. We argue that the advantages offered by (a) the high electronic and mechanical stability of the microscope, (b) the high emission stability and low beam energy spread of the high brightness Field Emission Gun (X-FEG), (c) direct electron detection technology and (d) particle-based Contrast Transfer Function (CTF) refinement have contributed to achieving high resolution. Overall, we show that basic electron optical settings for automated cryo-electron microscopy imaging can be used to determine structures approaching atomic resolution.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/métodos , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica/instrumentação , Cristalografia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína , Subunidades Proteicas , Imagem Individual de Molécula/instrumentação , Imagem Individual de Molécula/métodos , Eletricidade Estática
12.
Macromol Rapid Commun ; 40(18): e1900308, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31411778

RESUMO

Protein cages are interesting building blocks for functional supramolecular assemblies. A multi-responsive system composed of apoferritin and thermo-responsive block copolymers complexed through electrostatic interactions is described here. The polymers are linear chains with cationic and thermo-responsive blocks, and both diblock and triblock copolymers are studied. The apoferritin can be reversibly assembled and disassembled in aqueous solutions by altering the temperature and electrolyte concentration of the solutions. The control over the conditions is straightforward and all the components can be recovered, offering a potential alternative for systems requiring chemical or genetic modification of proteins.


Assuntos
Apoferritinas/química , Polímeros/química , Apoferritinas/ultraestrutura , Eletrólitos/química , Eletricidade Estática , Temperatura de Transição
14.
Nat Methods ; 15(10): 793-795, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250056

RESUMO

Most protein particles prepared in vitreous ice for single-particle cryo-electron microscopy (cryo-EM) are adsorbed to air-water or substrate-water interfaces, which can cause the particles to adopt preferred orientations. By using a rapid plunge-freezing robot and nanowire grids, we were able to reduce some of the deleterious effects of the air-water interface by decreasing the dwell time of particles in thin liquid films. We demonstrated this by using single-particle cryo-EM and cryo-electron tomography (cryo-ET) to examine hemagglutinin, insulin receptor complex, and apoferritin.


Assuntos
Ar , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/métodos , Hemaglutininas/ultraestrutura , Receptor de Insulina/ultraestrutura , Água/química , Humanos
15.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809143

RESUMO

Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.


Assuntos
Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/instrumentação , Ar/análise , Animais , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/métodos , DnaB Helicases/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/química , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Coelhos , Desidrogenase do Álcool de Açúcar/ultraestrutura , Propriedades de Superfície , Água/química
16.
Food Funct ; 9(4): 2015-2024, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29541738

RESUMO

The effect of chitosan decoration on the transport of epigallocatechin (EGC)-encapsulated ferritin cage across the Caco-2 cells was investigated. After the encapsulation of EGC in apo-red bean (adzuki) ferritin (apoRBF), the EGC-loaded apoRBF nanoparticle (ER) was fabricated with an encapsulation ratio of 11.6% (w/w). The results indicated that different chitosan molecules (with molecular weights of 980, 4600, 46 000, and 210 000 Da) could attach onto the apoRBF via electrostatic interactions to form ER-chitosan complexes (ERCs) (ERCs980, ERCs4600, ERCs46000, and ERCs210000). ERCs980 and ERCs4600 retained the typical shell-like morphology of ferritin with a size distribution of 12 nm and showed weak negative zeta-potentials at pH 6.7, while ERCs46000 and ERCs210000 significantly aggregated. Furthermore, the transport of EGC in ERCs980 and ERCs4600 across the Caco-2 cells was enhanced by the transferrin receptor 1 (TfR-1)-mediated absorption pathway, demonstrating that chitosan molecules with low molecular weights of 980 and 4600 Da were beneficial to the absorption of EGC based on the ferritin cage. This study will facilitate the application of ferritin-chitosan materials for fabricating the core-shell platform for encapsulation and bioavailability enhancement of bioactive molecules.


Assuntos
Apoferritinas/metabolismo , Catequina/análogos & derivados , Quitosana/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Nanoconjugados/química , Receptores da Transferrina/metabolismo , Absorção Fisiológica , Algoritmos , Apoferritinas/química , Apoferritinas/ultraestrutura , Catequina/administração & dosagem , Catequina/química , Catequina/metabolismo , Quitosana/química , Suplementos Nutricionais/análise , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica de Transmissão , Peso Molecular , Nanoconjugados/ultraestrutura , Tamanho da Partícula , Proteínas de Vegetais Comestíveis/metabolismo , Sementes/química , Eletricidade Estática , Propriedades de Superfície , Vigna/química
17.
Prep Biochem Biotechnol ; 46(8): 833-837, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26853188

RESUMO

Based on their nanocage architectures, ferritins show their potential applications in medical imaging and therapeutic delivery systems. However, the recombinant human H-chain ferritin (rHF) is prone to form inclusion bodies in Escherichia coli. In our study, the cDNA of rHF was cloned into plasmid pET28a under the control of a T7 promoter. Molecular chaperones, including GroES, GroEL, and trigger factor, were coexpressed with rHF to facilitate its correct folding. The results showed that the solubility of rHF was increased more than threefold with the help of molecular chaperones. Taking advantages of its N-terminal His-tag, rHF was then purified with Ni-affinity chromatography. With a yield of 15 mg/L from bacterial culture, the purified rHF was analyzed by circular dichroism spectrometry for its secondary structure. Moreover, the rHF nanocages were characterized by transmission electron microscopy and dynamic light scattering. Our results indicate that rHF is able to self-assemble into nanocages with a narrow size distribution.


Assuntos
Apoferritinas/química , Apoferritinas/genética , Apoferritinas/isolamento & purificação , Apoferritinas/ultraestrutura , Clonagem Molecular , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Solubilidade
19.
Science ; 346(6215): 1377-80, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25504723

RESUMO

Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that α helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of α-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/métodos , Ouro , Ribossomos/ultraestrutura , Animais , Microscopia Crioeletrônica/instrumentação , Cristalografia por Raios X , Cavalos , Processamento de Imagem Assistida por Computador , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
20.
Nanotechnology ; 25(46): 461001, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25355655

RESUMO

Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.


Assuntos
Apoferritinas/análise , Ferritinas/análise , Microscopia de Força Atômica/métodos , Apoferritinas/ultraestrutura , Ferritinas/ultraestrutura , Humanos , Fenômenos Magnéticos , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA