Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.791
Filtrar
1.
Sci Rep ; 14(1): 10645, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724583

RESUMO

Dyslipidaemias is the leading risk factor of several major cardiovascular diseases (CVDs), but there is still a lack of sufficient evidence supporting a causal role of lipoprotein subspecies in CVDs. In this study, we comprehensively investigated several lipoproteins and their subspecies, as well as other metabolites, in relation to coronary heart disease (CHD), heart failure (HF) and ischemic stroke (IS) longitudinally and by Mendelian randomization (MR) leveraging NMR-measured metabolomic data from 118,012 UK Biobank participants. We found that 123, 110 and 36 analytes were longitudinally associated with myocardial infarction, HF and IS (FDR < 0.05), respectively, and 25 of those were associated with all three outcomes. MR analysis suggested that genetically predicted levels of 70, 58 and 7 analytes were associated with CHD, HF and IS (FDR < 0.05), respectively. Two analytes, ApoB/ApoA1 and M-HDL-C were associated with all three CVD outcomes in the MR analyses, and the results for M-HDL-C were concordant in both observational and MR analyses. Our results implied that the apoB/apoA1 ratio and cholesterol in medium size HDL were particularly of importance to understand the shared pathophysiology of CHD, HF and IS and thus should be further investigated for the prevention of all three CVDs.


Assuntos
Doenças Cardiovasculares , Análise da Randomização Mendeliana , Humanos , Doenças Cardiovasculares/genética , Masculino , Feminino , Fatores de Risco , Pessoa de Meia-Idade , Espectroscopia de Ressonância Magnética/métodos , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Idoso , HDL-Colesterol/sangue , Doença das Coronárias/genética , Metabolômica/métodos , Apolipoproteína B-100/genética , AVC Isquêmico/genética , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , Insuficiência Cardíaca/genética
2.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711000

RESUMO

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Assuntos
Apolipoproteína A-I , HDL-Colesterol , Diabetes Gestacional , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Triglicerídeos , Humanos , Feminino , Gravidez , Diabetes Gestacional/genética , Diabetes Gestacional/sangue , Triglicerídeos/sangue , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , HDL-Colesterol/sangue , Apolipoproteínas/sangue , Apolipoproteínas/genética , Índice de Massa Corporal , Lipídeos/sangue , Fatores de Risco
3.
J Exp Clin Cancer Res ; 43(1): 102, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566092

RESUMO

BACKGROUND: Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS: In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS: This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS: This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Cricetinae , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Adenoviridae/genética , Linhagem Celular Tumoral , Apolipoproteína A-I/genética , Macaca mulatta , Mesocricetus , Colesterol
4.
Sci Rep ; 14(1): 8502, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605235

RESUMO

The current state of knowledge on the relationship between lifestyle factors, glycemic traits, lipoprotein traits with liver cancer risk is still uncertain despite some attempts made by observational studies. This study aims to investigate the causal genetic relationship between factors highly associated with liver cancer incidence by using Mendelian randomization (MR) analysis. Employing MR analysis, this study utilized previously published GWAS datasets to investigate whether lifestyle factors, glycemic traits, and lipoprotein traits would affect the risk of liver cancer. The study utilized three MR methods, including inverse variance-weighted model (IVW), MR Egger, and weighted median. Furthermore, MR-Egger analyses were performed to detect heterogeneity in the MR results. The study also conducted a leave-one-out analysis to assess the potential influence of individual SNPs on the MR analysis results. MR-PRESSO was used to identify and remove SNP outliers associated with liver cancer. MR analyses revealed that 2-h glucose (odds ratio, OR 2.33, 95% confidence interval, CI 1.28-4.21), type 2 diabetes mellitus (T2DM, OR 1.67, 95% CI 1.18-2.37), body mass index (BMI, OR 1.67, 95% CI 1.18-2.37), waist circumference (OR 1.78, 95% CI 1.18-2.37) were associated with increased risk of liver cancer. On the contrary, apolipoproteins B (APOB, OR 0.67, 95% CI 0.47-0.97), and low-density lipoprotein (LDL, OR 0.62, 95% CI 0.42-0.92) were negatively related to liver cancer risk. Additionally, after adjusting for BMI, apolipoproteins A-I (APOA-I, OR 0.56, 95% CI, 0.38-0.81), total cholesterol (TC, OR 0.72, 95% CI, 0.54-0.94), and total triglycerides (TG, OR 0.57, 95% CI, 0.40-0.78) exhibited a significant inverse correlation with the risk of liver cancer. This study supports a causal relationship between 2-h glucose, T2DM, BMI, and waist circumference with the increased risk of liver cancer. Conversely, the study reveals a cause-effect relationship between TC, TG, LDL, APOA-I, and APOB with a decreased risk of liver cancer.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Humanos , Apolipoproteína A-I/genética , Análise da Randomização Mendeliana , Lipoproteínas/genética , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Apolipoproteínas B/genética , Glucose , Estudo de Associação Genômica Ampla , Fatores de Risco
5.
Protein Sci ; 33(5): e4987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607188

RESUMO

High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Membranas Artificiais , Colesterol/metabolismo , Fosfolipídeos
6.
J Lipid Res ; 65(4): 100528, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458338

RESUMO

Dyslipidemia has long been implicated in elevating mortality risk; yet, the precise associations between lipid traits and mortality remained undisclosed. Our study aimed to explore the causal effects of lipid traits on both all-cause and cause-specific mortality. One-sample Mendelian randomization (MR) with linear and nonlinear assumptions was conducted in a cohort of 407,951 European participants from the UK Biobank. Six lipid traits, consisting of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a), were included to investigate the causal associations with mortality. Two-sample MR was performed to replicate the association between each lipid trait and all-cause mortality. Univariable MR results showed that genetically predicted higher ApoA1 was significantly associated with a decreased all-cause mortality risk (HR[95% CI]:0.93 [0.89-0.97], P value = 0.001), which was validated by the two-sample MR analysis. Higher lipoprotein(a) was associated with an increased risk of all-cause mortality (1.03 [1.01-1.04], P value = 0.002). Multivariable MR confirmed the direct causal effects of ApoA1 and lipoprotein(a) on all-cause mortality. Meanwhile, nonlinear MR found no evidence for nonlinearity between lipids and all-cause mortality. Our examination into cause-specific mortality revealed a suggestive inverse association between ApoA1 and cancer mortality, a significant positive association between lipoprotein(a) and cardiovascular disease mortality, and a suggestive positive association between lipoprotein(a) and digestive disease mortality. High LDL-C was associated with an increased risk of cardiovascular disease mortality but a decreased risk of neurodegenerative disease mortality. The findings suggest that implementing interventions to raise ApoA1 and decrease lipoprotein(a) levels may improve overall health outcomes and mitigate cancer and digestive disease mortality.


Assuntos
Lipídeos , Análise da Randomização Mendeliana , Humanos , Masculino , Feminino , Lipídeos/sangue , Pessoa de Meia-Idade , Fatores de Risco , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Causas de Morte , Idoso
7.
Prostaglandins Other Lipid Mediat ; 172: 106817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331090

RESUMO

Cardiovascular disease (CVD) has been the leading cause of death worldwide. As a chronic inflammatory disease, atherosclerosis (AS) acts as the initiating factor for CVD and reactive oxygen species (ROS) play a vital role in its development. Superoxide dismutases (SOD) can alleviate the detrimental effects of ROS and serve as the first line of defense through detoxifying the products derived from oxidative stress in vivo. Considering the potential preventive effects of high-density lipoprotein (HDL) on AS and the close relationship between CuZn superoxide dismutase (CuZnSOD) and HDL, the present work investigated whether CuZnSOD overexpression in swine could improve the function of HDL. Seven CuZnSOD transgenic swine, constructed by sperm and magnetic nanoparticles, demonstrated overexpressed CuZnSOD in the liver (P < 0.01) but comparable level to control in plasma (P > 0.05). CuZnSOD overexpression significantly down-regulated the levels of triglyceride (TG), apolipoprotein A-I (apoA-I) (P < 0.05), and high-density lipoprotein cholesterol (HDL-C) (P < 0.01) in plasma. In the presence of CuZnSOD overexpression, HDL3 significantly inhibited levels of IL-6 and TNF-α induced by oxidized low-density lipoprotein (oxLDL) (P < 0.05), indicating enhanced anti-inflammatory activity of HDL. At the same time, HDL-mediated cholesterol efflux did not decrease (P > 0.05). CuZnSOD overexpression improves the anti-inflammatory function of HDL despite decreased levels of HDL-C. In Conclusion, CuZnSOD overexpression improves HDL function in swine.


Assuntos
Lipoproteínas HDL , Superóxido Dismutase , Animais , Suínos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Lipoproteínas HDL/metabolismo , Animais Geneticamente Modificados , Interleucina-6/metabolismo , Interleucina-6/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/genética , Masculino , Fígado/metabolismo , Triglicerídeos/metabolismo , Triglicerídeos/sangue
8.
Front Public Health ; 12: 1330606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362221

RESUMO

Objective: Sepsis constitutes a significant global healthcare burden. Studies suggest a correlation between educational attainment and the likelihood of developing sepsis. Our goal was to utilize Mendelian randomization (MR) in order to examine the causal connection between educational achievement (EA) and sepsis, while measuring the mediating impacts of adjustable variables. Methods: We collected statistical data summarizing educational achievement (EA), mediators, and sepsis from genome-wide association studies (GWAS). Employing a two-sample Mendelian randomization (MR) approach, we calculated the causal impact of education on sepsis. Following this, we performed multivariable MR analyses to assess the mediation proportions of various mediators, including body mass index (BMI), smoking, omega-3 fatty acids, and apolipoprotein A-I(ApoA-I). Results: Genetic prediction of 1-SD (4.2 years) increase in educational attainment (EA) was negatively correlated with sepsis risk (OR = 0.83, 95% CI 0.71 to 0.96). Among the four identified mediators, ranked proportionally, they including BMI (38.8%), smoking (36.5%), ApoA-I (6.3%) and omega-3 (3.7%). These findings remained robust across a variety of sensitivity analyses. Conclusion: The findings of this study provided evidence for the potential preventive impact of EA on sepsis, which may be influenced by factors including and metabolic traits and smoking. Enhancing interventions targeting these factors may contribute to reducing the burden of sepsis.


Assuntos
Apolipoproteína A-I , Sepse , Humanos , Apolipoproteína A-I/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fumar , Escolaridade
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 125-131, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322516

RESUMO

Objective: To investigate the -75 G/A single-nucleotide polymorphism in the promoter region of apolipoprotein A1 gene (apoA1) and its association with gestational diabetes mellitus (GDM) in pregnant women and to provide references for the exploration in the molecular genetic basis of GDM. Methods: A total of 626 GDM patients and 1022 normal pregnant women, ie, the controls, were included in the study. The genotyping of apoA1 -75 G/A polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose (Glu) were measured by enzymatic methods. Plasma insulin (INS) was measured by chemiluminescence immunoassay. The protein levels of apoA1 and apoB were measured by the turbidimetric immunoassay. Results: Allele frequencies of G and A were 0.718 and 0.282 in the GDM group and 0.713 and 0.287 in the control group, respectively. Distribution of the genotype frequencies was found to be in Hardy-Weinberg equilibrium in both the GDM and control groups. There was no significant difference in the frequencies of alleles G and A and the genotypes of apoA1 -75 G/A polymorphism between the GDM and the control group (P>0.05). In the GDM group, the carriers with the genotype AA were associated with significantly higher levels of TC, HDL-C, and apoA1 than those with genotypes GG and GA did (all P<0.05). After the GDM patients were divided into obese and non-obese subgroups, the genotype-related apoA1 variation was observed only in obese patients, while the genotype-related TC and HDL-C variations were evident in non-obese patients (P<0.05). In the control group, carriers of genotypes AA and GA had higher systolic blood pressure (SBP) and HDL-C than the carriers of genotype GG did (all P<0.05). Carriers of genotypes AA had significantly lower Glu levels than carriers of genotypes GG and GA did (P<0.05). The control subjects were further divided into subgroups according to their body mass index (BMI). Analysis of the subgroups showed that AA carriers were associated with higher SBP levels in the obese control women only, while lower Glu levels were evident in both obese and non-obese control women. Conclusion: These results suggest that -75 G/A polymorphism in the apoA1 gene is not associated with GDM. However, the genetic variation is closed associated with the plasma apoA1, HDL-C, and TC levels in GDM patients and plasma HDL-C, Glu, and SBP levels in the control subjects. The apoA1 variant-associated lipids and SBP variation is BMI dependent in both groups.


Assuntos
Apolipoproteína A-I , Diabetes Gestacional , Feminino , Humanos , Gravidez , Apolipoproteína A-I/genética , HDL-Colesterol , Frequência do Gene , Genótipo , Lipídeos , Obesidade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
10.
J Control Release ; 367: 27-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215984

RESUMO

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Modelos Animais de Doenças
11.
Calcif Tissue Int ; 114(2): 147-156, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38071623

RESUMO

BACKGROUND: Observational studies have shown a causal association between dyslipidemia and osteoporosis, but the genetic causation and complete mechanism of which are uncertain. The disadvantage of previous observational studies is that they are susceptible to confounding factors and bias, that makes it difficult to infer a causal link between those two diseases. Abnormal epigenetic modifications, represented by DNA methylation, are important causes of many diseases. However, there are no studies showing a bridging role for methylation modifications in blood lipid metabolism and osteoporosis. METHODS: SNPs for lipid profile (Blood VLDL cholesterol (VLDL-C), blood LDL cholesterol (LDL-C), blood HDL cholesterol (HDL-C), blood triglycerides (TG), diagnosed pure hypercholesterolaemia, blood apolipoprotein B (Apo B), blood apolipoprotein A1(Apo A1)), and bone mineral density (BMD) in different body parts (Heel BMD, lumbar BMD, whole-body BMD, femoral neck BMD) were obtained from large meta-analyses of genome-wide association studies as instrumental variables for two-sample Mendelian randomization. Assessment of the genetic effects of lipid profile-associated methylation sites and bone mineral density was carried out using the summary-data-based Mendelian randomization (SMR) method. RESULTS: Two-sample Mendelian randomization showed that there was a negative causal association between hypercholesterolaemia and heel BMD (p = 0.0103, OR = 0.4590), and total body BMD (p = 0.0002, OR = 0.2826). LDL-C had a negative causal association with heel BMD (p = 8.68E-05, OR = 0.9586). VLDL-C had a negative causal association with heel BMD (p = 0.035, OR = 0.9484), lumbar BMD (p = 0.0316, OR = 0.9356), and total body BMD (p = 0.0035, OR = 0.9484). HDL-C had a negative causal association with heel BMD (p = 1.25E-05, OR = 0.9548), lumbar BMD (p = 0.0129, OR = 0.9358), and total body BMD (p = 0.0399, OR = 0.9644). Apo B had a negative causal association with heel BMD (p = 0.0001, OR = 0.9647). Apo A1 had a negative causal association with heel BMD (p = 0.0132, OR = 0.9746) and lumbar BMD (p = 0.0058, OR = 0.9261). The p-values of all positive results corrected by the FDR method remained significant and sensitivity analysis showed that there was no horizontal pleiotropy in the results despite the heterogeneity in some results. SMR identified 3 methylation sites associated with lipid profiles in the presence of genetic effects on BMD: cg15707428(GREB1), cg16000331(SREBF2), cg14364472(NOTCH1). CONCLUSION: Our study provides insights into the potential causal links and co-pathogenesis between dyslipidemia and osteoporosis. The genetic effects of dyslipidaemia on osteoporosis may be related to certain aberrant methylation genetic modifications.


Assuntos
Hipercolesterolemia , Osteoporose , Humanos , Apolipoproteína A-I/genética , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Análise da Randomização Mendeliana , Hipercolesterolemia/genética , Multiômica , LDL-Colesterol/genética , Osteoporose/genética , Densidade Óssea/genética , Metilação de DNA , Lipídeos , Apolipoproteínas B/genética , Polimorfismo de Nucleotídeo Único
12.
Neurol Sci ; 45(2): 547-556, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673807

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is the most common type of dementia. Amnestic mild cognitive impairment (aMCI), a pre-dementia stage is an important stage for early diagnosis and intervention. This study aimed to investigate the diagnostic value of qEEG, APOA-I, and APOE ɛ4 allele in aMCI and AD patients and found the correlation between qEEG (Delta + Theta)/(Alpha + Beta) ratio (DTABR) and different cognitive domains. METHODS: All participants were divided into three groups: normal controls (NCs), aMCI, and AD, and all received quantitative electroencephalography (qEEG), neuropsychological scale assessment, apolipoprotein epsilon 4 (APOE ɛ4) alleles, and various blood lipid indicators. Different statistical methods were used for different data. RESULTS: The cognitive domains except executive ability were all negatively correlated with DTABR in different brain regions while executive ability was positively correlated with DTABR in several brain regions, although without statistical significance. The consequences confirmed that the DTABR of each brain area were related to MMSE, MoCA, instantaneous memory, and the language ability (p < 0.05), and the DTABR in the occipital area was relevant to all cognitive domains (p < 0.01) except executive function (p = 0.272). Also, occipital DTABR was most correlated with language domain when tested by VFT with a moderate level (r = 0.596, p < 0.001). There were significant differences in T3, T5, and P3 DTABR between both AD and NC and aMCI and NCs. As for aMCI diagnosis, the maximum AUC was achieved when using T3 combined with APOA-I and APOE ε4 (0.855) and the maximum AUC was achieved when using T5 combined with APOA-I and APOE ε4 (0.889) for AD diagnosis. CONCLUSION: These findings highlight that APOA-I, APOE ɛ4, and qEEG play an important role in aMCI and AD diagnosis. During AD continuum, qEEG DTABR should be taken into consideration for the early detection of AD risk.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Apolipoproteína A-I/genética , Alelos , Apolipoproteína E4/genética , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Apolipoproteínas , Testes Neuropsicológicos , Eletroencefalografia , Apolipoproteínas E/genética
13.
Br J Haematol ; 204(4): 1483-1494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031970

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. Cellular and systemic lipid metabolism plays a significant role in the regulation of immune cell activities. However, the role of lipoprotein lipids and apolipoproteins in ITP remains elusive. The automatic biochemistry analyser was used to measure the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA-I), apoB, apoE and lipoprotein a [LP(a)]. Genetic variants strongly associated with circulating lipoprotein lipids and apolipoproteins (LDL-C, apoB, TG, HDL-C and apoA-I) were extracted to perform Mendelian randomization (MR) analyses. Finally, drug-target MR and passive ITP mice model was used to investigate the potential druggable targets of ITP. Levels of HDL-C, apoA-I, decreased and LP(a) increased in ITP patients compared with healthy controls. Low HDL-C was causally associated with ITP susceptibility. Through drug-target MR and animal modelling, ABCA1 was identified as a potential target to design drugs for ITP. Our study found that lipid metabolism is related to ITP. The causative association between HDL-C and the risk of ITP was also established. The study provided new evidence of the aetiology of ITP. ABCA1 might be a potential drug target for ITP.


Assuntos
Apolipoproteína A-I , Púrpura Trombocitopênica Idiopática , Animais , Camundongos , Humanos , Apolipoproteína A-I/genética , LDL-Colesterol , Lipídeos , Análise da Randomização Mendeliana , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/genética , Apolipoproteínas/genética , Triglicerídeos , HDL-Colesterol
14.
J Lipid Res ; 65(1): 100482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052254

RESUMO

Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.


Assuntos
Apolipoproteína A-I , Colesterol , HDL-Colesterol , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Fluorescência , Transportador 1 de Cassete de Ligação de ATP/genética , Colesterol/metabolismo , Mutação de Sentido Incorreto
15.
Antivir Ther ; 28(6): 13596535231219639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037795

RESUMO

BACKGROUND: Previously, we have demonstrated that Apolipoprotein A-I (ApoA-I) could inhibit the secretion of Hepatitis B virus (HBV), suggesting that stimulation of ApoA-I may block particle production. In the present study, we evaluated the anti-HBV effect of RVX-208, a small-molecule stimulator of ApoA-I gene expression. METHODS: RVX-208 was used to treat HepG2.2.15 cell, a HepG2 derived cell line stably producing HBV virus. Real-time PCR was performed to examine the HBV DNA levels. Magnetic particles, which were coated with anti-HBS or anti-HBE antibody, were used to examine the HBsAg and HBeAg levels in the supernatant of cultured HepG2.2.15 cells in combination with the enzyme conjugates that were prepared with horseradish peroxidase labelled anti-HBS or anti-HBE antibody in a double antibody sandwich manner. RNA-seq, immunoblots and real-time PCR were used to analyze the functional mechanism of RVX-208. RESULTS: RVX-208 could elevate the ApoA-I protein levels in HepG2.2.15 cells. In the meantime, RVX-208 significantly repressed HBV DNA, HBsAg and HBeAg levels in the supernatants of HepG2.2.15 cells. RNA-seq data revealed that RVX-208 treatment not only affected the cholesterol metabolism, which is closely related to ApoA-I, but also regulated signalling pathways that are associated with antiviral immune response. Moreover, mechanistic studies demonstrated that RVX-208 could activate cGAS-STING pathway and upregulate the transcription of a series of interferons, pro-inflammatory cytokines and chemokines with antiviral potential that are at the downstream of cGAS-STING pathway. CONCLUSION: Our study demonstrated that RVX-208, an inducer of ApoA-I, could suppress HBV particle production through activation of cGAS-STING pathway.


Assuntos
Apolipoproteína A-I , Vírus da Hepatite B , Humanos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Antígenos de Superfície da Hepatite B , DNA Viral , Antígenos E da Hepatite B , Células Hep G2 , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
16.
BMC Med Genomics ; 16(1): 325, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087303

RESUMO

OBJECTIVES: In response to the controversy surrounding observational studies of the association between lipid profiles and the risk of insomnia, the aim of this study was to analyze lipid profiles, including triglycerides (TG), apolipoprotein A-1 (ApoA-1), apolipoprotein B (ApoB) and lipoprotein A (LPA), in a European population to further assess the causal relationship between these lipid types and insomnia. MATERIALS AND METHODS: This study explores the causal effect of lipid profiles on insomnia based on a genome-wide association study (GWAS)-derived public dataset using two-sample and multivariate Mendelian randomization (MVMR) analysis. The main MR analyses used inverse variance weighting (IVW) odds ratio (OR), and the sensitivity analyses included weighted median (WM) and MR‒Egger. RESULTS: Both MR and MVMR showed that lowering ApoA-1 and LPA levels had causal effects on the risk of insomnia [MR: per 10 units, ApoA-1: OR: 0.7546, 95% CI: 0.6075-0.9372, P = 0.011; LPA: OR: 0.8392, 95% CI: 0.7202-0.9778, P = 0.025; MVMR: per 10 units, ApoA-1: OR: 0.7600, 95% CI: 0.6362-0.9079, P = 0.002; LPA, OR: 0.903, 95% CI: 0.8283-0.9845, P = 0.021]. There were no causal effects of TG or ApoB on insomnia (all P > 0.05). The MR‒Egger intercept test, funnel plot, and IVW methods all suggested an absence of strong directional pleiotropy, and leave-one-out permutation analysis did not detect any single single-nucleotide polymorphism that had a strong influence on the results. CONCLUSION: Elevated levels of ApoA-1 and LPA were independently and causally associated with the risk of insomnia, suggesting that elevated ApoA-1 and LPA levels may contribute to a reduced risk of insomnia.


Assuntos
Apolipoproteína A-I , Distúrbios do Início e da Manutenção do Sono , Humanos , Apolipoproteína A-I/genética , Apolipoproteínas B , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Distúrbios do Início e da Manutenção do Sono/complicações , Distúrbios do Início e da Manutenção do Sono/genética , Triglicerídeos
17.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138504

RESUMO

Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.


Assuntos
Apolipoproteínas A , Interferon-alfa , Chlorocebus aethiops , Humanos , Camundongos , Animais , Interferon-alfa/genética , Interferon-alfa/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/química , Apolipoproteína A-I/genética , Células Vero , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Interferon alfa-2
18.
Arch Biochem Biophys ; 750: 109805, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913855

RESUMO

BACKGROUND: The extracellular matrix (ECM) is a complex tridimensional scaffold that actively participates in physiological and pathological events. The objective of this study was to test whether structural proteins of the ECM and glycosaminoglycans (GAGs) may favor the retention of human apolipoprotein A-I (apoA-I) variants associated with amyloidosis and atherosclerosis. METHODS: Biopolymeric matrices containing collagen type I (Col, a main macromolecular component of the ECM) with or without heparin (Hep, a model of GAGs) were constructed and characterized, and used to compare the binding of apoA-I having the native sequence (Wt) or Arg173Pro, a natural variant inducing cardiac amyloidosis. Protein binding was observed by fluorescence microscopy and unbound proteins quantified by a colorimetric assay. RESULTS: Both, Wt and Arg173Pro bound to the scaffolds containing Col, but the presence of Hep diminished the binding efficiency. Col-Hep matrices retained Arg173Pro more than the Wt. The retained protein was only partially removed from the matrices with saline solutions, indicating that electrostatic interactions may occur but are not the main driving force. Using in addition thermodynamic molecular simulations and size exclusion chromatography approaches, we suggest that the binding of apoA-I variants to the biopolymeric matrices is driven by many low affinity interactions. CONCLUSIONS: Under this scenario Col-Hep scaffolds contribute to the binding of Arg173Pro, as a cooperative platform which could modify the native protein conformation affecting protein folding. GENERAL SIGNIFICANCE: We show that the composition of the ECM is key to the protein retention, and well characterized biosynthetic matrices offer an invaluable in vitro model to mimic the hallmark of pathologies with interstitial infiltration such as cardiac amyloidosis.


Assuntos
Amiloidose , Heparina , Humanos , Amiloidose/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Heparina/metabolismo
19.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003549

RESUMO

Preeclampsia (PE) is one of the pregnancy complications, leading to major maternal and fetal morbidity and mortality; however, the underlying mechanisms of PE still remain unclear. We aimed to explore the role of apolipoprotein A1 (APOA1) in the pathophysiology of PE. The expression of APOA1 was elevated in both plasma and placental tissues, as detected by Western blotting, immunohistochemistry, and a qRT-PCR assay. Importantly, we detected the concentration of APOA1 using the ELISA assay in normal control women (n = 30) and women with preeclampsia (n = 29) from a prospective cohort study. The concentration of APOA1 was not significantly altered in plasma during early and mid-term gestation of the PE patients compared to the NP patients; however, it was elevated during late gestation. Additionally, the concentration of APOA1 was positively associated with systolic blood pressure during late gestation. The proliferation and invasion of trophoblast were all increased in HTR8/SVneo cells transfected with APOA1 siRNA and decreased in HTR8/SVneo cells treated with the recombinant human APOA1 protein (rhAPOA1). Additionally, we used public datasets to investigate the downstream genes of APOA1 and qRT-PCR for validation. Furthermore, we explored the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) in APOA1 by using a luciferase assay, which showed that the APOA1 promoter was activated by PPARγ. Additionally, the inhibitory effect of rhAPOA1 on the ability of trophoblast invasion and proliferation can be rescued by the PPARγ inhibitor. Our findings suggest the crucial role of APOA1 in PE, which might provide a new strategy for the prevention and treatment of PE.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , PPAR gama/metabolismo , Estudos Prospectivos , Trofoblastos/metabolismo , Movimento Celular , Proliferação de Células/genética
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 994-999, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37866958

RESUMO

Objective: To investigate the apolipoprotein C-3 (APOC3) gene Sst Ⅰ polymorphism and its relationship with changes in serum lipids in patients with gestational diabetes mellitus (GDM). Methods: A total of 630 pregnant women with GDM and 1027 normal pregnant controls were covered in the study. The genotype and allele frequencies of APOC3 Sst Ⅰ polymorphism were analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose (Glu) were measured by enzymatic methods. Plasma insulin (INS) was measured by chemiluminescence. Apolipoproteins A 1 (apoA1) and B (apoB) levels were measured by turbidimetric immunoassay. Results: The allele frequencies of S1 and S2 of the APOC3 polymorphism at the SstⅠ locus were 0.704 and 0.296 in the GDM group and 0.721 and 0.279 in the control group, respectively. There was no significant difference in genotype frequency and allele frequency of APOC3 Sst Ⅰ polymorphism between the GDM and the control groups ( P>0.05). In the GDM group, those with S2S2 and S1S2 genotypes had higher plasma HDL-C levels and lower atherogenic index (AI) values than those with S1S1 genotype did, with the differences being statistically significant (all P<0.05). GDM patients were then divided into obesity and non-obesity subgroups. Further subgroup analysis showed that the association of APOC3 genotype with changes in HDL-C levels was observed only in obese GDM patients, while the association of APOC3 genotype with changes in AI values was observed in both obese and nonobese patients. In addition, in obese GDM patients, those with S2S2 genotype had significantly higher plasma TG levels than those with S1S1 and S1S2 genotypes did ( P<0.05 and P<0.01, respectively). In non-obese GDM patients, those with S2S2 genotype had significantly lower apoB/apoA1 ratio than S2S2 carriers did ( P<0.05). No genotype-related effect on lipid and apolipoprotein variations was evident in the normal controls. Conclusion: APOC3 Sst Ⅰ polymorphism in GDM patients is associated with HDL-C and TG levels as well as AI value and apoB/apoA1 ratio. The changes in lipid levels and apolipoprotein ratio showed BMI-dependent features. However, association between polymorphism at the locus and the development of GDM was not observed.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Apolipoproteína A-I/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Apolipoproteínas C/genética , HDL-Colesterol , Diabetes Gestacional/genética , Frequência do Gene , Genótipo , Obesidade/genética , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA