RESUMO
BACKGROUND AND PURPOSE: Genome-wide association studies (GWAS) of metabolic syndrome (MetS) have predominantly focused on non-Asian populations, with limited representation from East Asian cohorts. Moreover, previous GWAS analyses have primarily emphasized the significance of top single nucleotide polymorphisms (SNPs), poorly explaining other SNP signals in linkage disequilibrium. This study aimed to reveal the interaction between rs651821 and rs2266788, the principal variants of apolipoprotein A5 (APOA5), within the most significant loci identified through GWAS on MetS. METHODS: GWAS on MetS and its components was conducted using the data from the Korean Genome and Epidemiology Study (KoGES) city cohort comprising 58,600 individuals with available biochemical, demographic, lifestyle factors, and the most significant APOA5 locus was analyzed further in depth. RESULTS: According to GWAS of MetS and its diagnostic components, a significant association between the APOA5 SNPs rs651821/rs2266788 and MetS/triglycerides/high-density lipoprotein phenotypes was revealed. However, a conditional analysis employing rs651821 unveiled a reversal in the odds ratio for rs2266788. Therefore, rs651821 and rs2266788 emerged as independent and opposing signals in the extended GWAS analysis, i.e., the multilayered effects. Further gene-environment interaction analyses regarding lifestyle factors such as smoking, alcohol consumption, and physical activity underscored these multilayered effects. CONCLUSION: This study unveils the intricate interplay between rs651821 and rs2266788 derived from MetS GWAS. Removing the influence of lead SNP reveals an independent protective signal associated with rs2266788, suggesting a multilayered effect between these SNPs. These findings underline the need for novel perspectives in future MetS GWAS.
Assuntos
Apolipoproteína A-V , Estudo de Associação Genômica Ampla , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Apolipoproteína A-V/genética , Síndrome Metabólica/genética , Masculino , Pessoa de Meia-Idade , Feminino , República da Coreia/epidemiologia , Povo Asiático/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Adulto , Idoso , Triglicerídeos/sangue , Lipoproteínas HDL/genética , População do Leste AsiáticoRESUMO
Coronary artery disease (CAD) is the leading cause of death in India. Many genetic polymorphisms play a role in regulating oxidative stress, blood pressure and lipid metabolism, contributing to the pathophysiology of CAD. This study examined the association between ten polymorphisms and CAD in the Jat Sikh population from Northern India, also considering polygenic risk scores. This study included 177 CAD cases and 175 healthy controls. The genetic information of GSTM1 (rs366631), GSTT1 (rs17856199), ACE (rs4646994), AGT M235T (rs699), AGT T174M (rs4762), AGTR1 A1166C (rs5186), APOA5 (rs3135506), APOC3 (rs5128), APOE (rs7412) and APOE (rs429358) and clinical information was collated. Statistical analyses were performed using SPSS version 27.0 and SNPstats. Significant independent associations were found for GST*M1, GST*T1, ACE, AGT M235T, AGT T174M, AGTR1 A1166C and APOA5 polymorphisms and CAD risk (all p < 0.05). The AGT CT haplotype was significantly associated with a higher CAD risk, even after controlling for covariates (adjusted OR = 3.93, 95% CI [2.39-6.48], p < 0.0001). The APOA5/C3 CC haplotype was also significantly associated with CAD (adjusted OR = 1.86, 95% CI [1.14-3.03], p < 0.05). A higher polygenic risk score was associated with increased CAD risk (adjusted OR = 1.98, 95% CI [1.68-2.34], p < 0.001). Seven polymorphisms were independently associated with an increase in the risk of CAD in this North Indian population. A considerable risk association of AGT, APOA5/C3 haplotypes and higher genetic risk scores is documented, which may have implications for clinical and public health applications.
Assuntos
Angiotensinogênio , Apolipoproteína A-V , Apolipoproteínas E , Doença da Artéria Coronariana , Estratificação de Risco Genético , Glutationa Transferase , Polimorfismo de Nucleotídeo Único , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Angiotensinogênio/genética , Apolipoproteína A-V/genética , Apolipoproteína C-III , Apolipoproteínas E/genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Frequência do Gene , Estudos de Associação Genética , Glutationa Transferase/genética , Haplótipos , Índia/epidemiologia , Peptidil Dipeptidase A/genética , Receptor Tipo 1 de Angiotensina/genética , Fatores de RiscoRESUMO
BACKGROUND: The association between Apolipoprotein A5 (APOA5) genetic polymorphisms and susceptibility to metabolic syndrome (MetS) has been established by many studies, but there have been conflicting results from the literature. We performed a meta-analysis of observational studies to evaluate the association between APOA5 gene polymorphisms and the prevalence of MetS. METHODS: PubMed, Web of Science, Embase, and Scopus were searched up to April 2024. The random effects model was used to estimate the odds ratios (ORs) and 95% confidence intervals (CI) of the association between APOA5 gene polymorphisms and the prevalence of MetS development. The potential sources of heterogeneity were evaluated by subgroup analyses and sensitivity analyses. RESULTS: A total of 30 studies with 54,986 subjects (25,341 MetS cases and 29,645 healthy controls) were included. The presence of rs662799 and rs651821 polymorphisms is associated with an approximately 1.5-fold higher likelihood of MetS prevalence (OR = 1.42, 95% CI: 1.32, 1.53, p < 0.001; I2 = 67.1%; P-heterogeneity < 0.001; and OR = 1.50, 95% CI: 1.36-1.65, p < 0.001), respectively. MetS is also more prevalent in individuals with the genetic variants rs3135506 and rs2075291. There was no evidence of a connection with rs126317. CONCLUSION: The present findings suggest that polymorphisms located in the promoter and coding regions of the APOA5 gene are associated with an increased prevalence of MetS in the adult population. Identifying individuals with these genetic variations could lead to early disease detection and the implementation of preventive strategies to reduce the risk of MetS and its related health issues. However, because the sample size was small and there was evidence of significant heterogeneity for some APOA5 gene polymorphisms, these results need to be confirmed by more large-scale and well-designed studies.
Assuntos
Apolipoproteína A-V , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Apolipoproteína A-V/genética , Humanos , Razão de ChancesRESUMO
BACKGROUND: Homozygous mutations in the APOA5 gene constitute a rare cause of monogenic hypertriglyceridemia, or familial chylomicronemia syndrome (FCS). We searched PubMed and identified 16 cases of homozygous mutations in the APOA5 gene. Severe hypertriglyceridemia related to monogenic mutations in triglyceride-regulating genes can cause recurrent acute pancreatitis. Standard therapeutic approaches for managing this condition typically include dietary interventions, fibrates, and omega-3-fatty acids. A novel therapeutic approach, antisense oligonucleotide volanesorsen is approved for use in patients with FCS. CASE PRESENTATION: We report a case of a 25-years old Afghani male presenting with acute pancreatitis due to severe hypertriglyceridemia up to 29.8 mmol/L caused by homozygosity in APOA5 (c.427delC, p.Arg143Alafs*57). A low-fat diet enriched with medium-chain TG (MCT) oil and fibrate therapy did not prevent recurrent relapses, and volanesorsen was initiated. Volanesorsen resulted in almost normalized triglyceride levels. No further relapses of acute pancreatitis occurred. Patient reported an improve life quality due to alleviated chronic abdominal pain and headaches. CONCLUSIONS: Our case reports a rare yet potentially life-threatening condition-monogenic hypertriglyceridemia-induced acute pancreatitis. The implementation of the antisense drug volanesorsen resulted in improved triglyceride levels, alleviated symptoms, and enhanced the quality of life.
Assuntos
Apolipoproteína A-V , Homozigoto , Hipertrigliceridemia , Pancreatite , Recidiva , Humanos , Masculino , Adulto , Pancreatite/genética , Apolipoproteína A-V/genética , Hipertrigliceridemia/genética , Mutação , Oligonucleotídeos/uso terapêutico , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/complicações , Dieta com Restrição de Gorduras , Triglicerídeos/sangueRESUMO
Although platinum-based chemotherapy is the frontline regimen for colorectal cancer (CRC), drug resistance remains a major challenge affecting its therapeutic efficiency. However, there is limited research on the correlation between chemotherapy resistance and lipid metabolism, including PIK3CA mutant tumors. In this present study, we found that PIK3CA-E545K mutation attenuated cell apoptosis and increased the cell viability of CRC with L-OHP treatment in vitro and in vivo. Mechanistically, PIK3CA-E545K mutation promoted the nuclear accumulation of SREBP1, which promoted the transcription of Apolipoprotein A5 (APOA5). APOA5 activated the PPARγ signaling pathway to alleviate reactive oxygen species (ROS) production following L-OHP treatment, which contributed to cell survival of CRC cells. Moreover, APOA5 overexpression enhanced the stemness-related traits of CRC cells. Increased APOA5 expression was associated with PIK3CA mutation in tumor specimens and poor response to first-line chemotherapy, which was an independent detrimental factor for chemotherapy sensitivity in CRC patients. Taken together, this study indicated that PIK3CA-E545K mutation promoted L-OHP resistance by upregulating APOA5 transcription in CRC, which could be a potent target for improving L-OHP chemotherapeutic efficiency. Our study shed light to improve chemotherapy sensitivity through nutrient management in CRC.
Assuntos
Apolipoproteína A-V , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Mutação , Oxaliplatina , Espécies Reativas de Oxigênio , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos , Masculino , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism. Biochemical studies revealed that APOA5 binds to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppresses its ability to inhibit the activity of lipoprotein lipase (LPL). Thus, APOA5 deficiency is accompanied by increased ANGPTL3/8 activity and lower levels of LPL activity. APOA5 deficiency also reduces amounts of LPL in capillaries of oxidative tissues (e.g., heart, brown adipose tissue). Cell culture experiments revealed the likely explanation: ANGPTL3/8 detaches LPL from its binding sites on the surface of cells, and that effect is blocked by APOA5. Both the low intracapillary LPL levels and the high plasma triglyceride levels in Apoa5-/- mice are normalized by recombinant APOA5. Carboxyl-terminal sequences in APOA5 are crucial for its function; a mutant APOA5 lacking 40-carboxyl-terminal residues cannot bind to ANGPTL3/8 and lacks the ability to change intracapillary LPL levels or plasma triglyceride levels in Apoa5-/- mice. Also, an antibody against the last 26 amino acids of APOA5 reduces intracapillary LPL levels and increases plasma triglyceride levels in wild-type mice. An inhibitory ANGPTL3/8-specific antibody functions as an APOA5-mimetic reagent, increasing intracapillary LPL levels and lowering plasma triglyceride levels in both Apoa5-/- and wild-type mice. That antibody is a potentially attractive strategy for treating elevated plasma lipid levels in human patients.
Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Lipase Lipoproteica , Animais , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Capilares/metabolismo , Camundongos , Triglicerídeos/metabolismo , Triglicerídeos/sangueRESUMO
Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry. However, relatively little is known about the contribution of genetic variation of HTG in people of African ancestry (AA), potentially constraining research and treatment opportunities. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole-genome sequencing data and longitudinal electronic health records available in the All of Us program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between HTG patients and normal TG among a cohort of AA patients (N = 15,373). Those with mild-to-moderate HTG (N = 342) and severe HTG (N ≤ 20) were more likely to carry APOA5 p.S19W (odds ratio = 1.94, 95% confidence interval = [1.48-2.54], P = 1.63 × 10-6 and OR = 3.65, 95% confidence interval: [1.22-10.93], P = 0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) polygenic risk score, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.
Assuntos
Hipertrigliceridemia , Triglicerídeos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteína A-V/genética , Negro ou Afro-Americano/genética , População Negra/genética , Hipertrigliceridemia/etnologia , Hipertrigliceridemia/genética , Triglicerídeos/sangue , Estados Unidos/epidemiologiaRESUMO
Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.
Assuntos
Apolipoproteínas , Lipase Lipoproteica , Camundongos , Humanos , Animais , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Proteína 3 Semelhante a Angiopoietina , Aminoácidos , Triglicerídeos/metabolismo , Apolipoproteína A-V/genéticaRESUMO
BACKGROUND: This study aims to show the clinical and biochemical features in patients with severe hypertriglyceridemia (HTG) associated with rare variants in the apolipoprotein A-V (APOA5) gene. MATERIALS AND METHODS: Demographics, blood lipid levels, body mass index (BMI) and APOA5 mutation subtypes were collected from the endocrinology clinic registry and analyzed for a retrospective cohort study of ten patients with severe HTG and APOA5 gene variants. RESULTS: Of the 10 cases, four were female, and six were male. The median age was 45.0 years (min-max: 21-60 years), the median triglyceride was 2429.5 mg/dL (27.5 mmol/L) (min-max: 1351-4087 mg/dL, 15.3-46.2 mmol/L), and the mean BMI was calculated as 30.4 ± 4.4 kg/m2 (min-max: 24.9-41.0 kg/m2). Four cases had diabetes mellitus (DM); two were on intensive insulin therapy, and two were on basal insulin therapy. The mean hemoglobin A1c was 9.2 ± 1.2 % (min-max: 8.3-11.0 %). Among the study group, eight different APOA5 gene mutations were detected. These variants were heterozygous in 2 patients and homozygous (bi-allelic) in 8 patients. One patient was homozygous for APOA5 p.Ser19Trp, a relatively common polymorphism that is a risk variant for HTG. CONCLUSION: We report a cohort of patients with biallelic and single copy APOA5 variants, who were diagnosed later in life. Most had secondary factors, such as DM or obesity with increased BMI. Most rare APOA5 variants found in our patients were of uncertain significance. Our results add to the growing evidence that rare variants in certain candidate genes may predispose to developing HTG, together with secondary factors such as obesity. The genetic basis of HTG in many other patients is still unknown and remains the subject of further investigation.
Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Humanos , Apolipoproteína A-V/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Hipertrigliceridemia/genética , Adulto Jovem , Mutação , Estudos Retrospectivos , Estudos de Coortes , Índice de Massa Corporal , Variação GenéticaRESUMO
Vascular risk factors, including diabetes, hypertension, hyperlipidemia, and obesity, pose significant health threats with implications extending to neuropsychiatric disorders such as stroke and Alzheimer's disease. The Asian population, in particular, appears to be disproportionately affected due to unique genetic predispositions, as well as epigenetic factors such as dietary patterns and lifestyle habits. Existing management strategies often fall short of addressing these specific needs, leading to greater challenges in prevention and treatment. This review highlights a significant gap in our understanding of the impact of genetic screening in the early detection and tailored treatment of vascular risk factors among the Asian population. Apolipoprotein, a key player in cholesterol metabolism, is primarily associated with dyslipidemia, yet emerging evidence suggests its involvement in conditions such as diabetes, hypertension, and obesity. While genetic variants of vascular risk are ethnic-dependent, current evidence indicates that epigenetics also exhibits ethnic specificity. Understanding the interplay between Apolipoprotein and genetics, particularly within diverse ethnic backgrounds, has the potential to refine risk stratification and enhance precision in management. For Caucasian carrying the APOA5 rs662799 C variant, pharmacological interventions are recommended, as dietary interventions may not be sufficient. In contrast, for Asian populations with the same genetic variant, dietary modifications are initially advised. Should dyslipidemia persist, the consideration of pharmaceutical agents such as statins is recommended.
Assuntos
Apolipoproteína A-V , Povo Asiático , Predisposição Genética para Doença , Doenças Vasculares , Humanos , Apolipoproteína A-V/genética , Povo Asiático/genética , Variação Genética , Fatores de Risco , Doenças Vasculares/genéticaRESUMO
Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.
Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Lipase Lipoproteica , Pancreatite , Humanos , Pancreatite/genética , Pancreatite/sangue , Lipase Lipoproteica/genética , Lipase Lipoproteica/sangue , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Apolipoproteína A-V/genética , Apolipoproteínas E/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Obesidade/complicações , Obesidade/genética , Obesidade/sangue , Doença Aguda , Triglicerídeos/sangue , Proteínas de MembranaRESUMO
BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.
Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Doença Aguda , Pancreatite/genética , Lipase Lipoproteica/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , MutaçãoRESUMO
PURPOSE OF REVIEW: While biallelic rare APOA5 pathogenic loss-of-function (LOF) variants cause familial chylomicronemia syndrome, heterozygosity for such variants is associated with highly variable triglyceride phenotypes ranging from normal to severe hypertriglyceridemia, often in the same individual at different time points. Here we provide an updated overview of rare APOA5 variants in hypertriglyceridemia. RECENT FINDINGS: Currently, most variants in APOA5 that are considered to be pathogenic according to guidelines of the American College of Medical Genetics and Genomics are those resulting in premature termination codons. There are minimal high quality functional data on the impact of most rare APOA5 missense variants; many are considered as variants of unknown or uncertain significance. Furthermore, particular common polymorphisms of APOA5 , such as p.Ser19Trp and p.Gly185Cys in Caucasian and Asian populations, respectively, are statistically overrepresented in hypertriglyceridemia cohorts and are sometimes misattributed as being causal for chylomicronemia, when they are merely risk alleles for hypertriglyceridemia. SUMMARY: Both biallelic and monoallelic LOF variants in APOA5 are associated with severe hypertriglyceridemia, although the biochemical phenotype in the monoallelic state is highly variable and is often exacerbated by secondary factors. Currently, with few exceptions, the principal definitive mechanism for APOA5 pathogenicity is through premature truncation. The pathogenic mechanisms of most missense variants in APOA5 remain unclear and require additional functional experiments or family studies.
Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Humanos , Apolipoproteína A-V/genética , Variação Genética , Heterozigoto , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/genética , Hipertrigliceridemia/patologia , Polimorfismo Genético , Triglicerídeos/genéticaRESUMO
Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.
Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Receptores de Lipoproteínas , Animais , Camundongos , Capilares/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/sangue , Apolipoproteína A-V/genéticaRESUMO
Background: Apolipoprotein A5 (APOA5) is involved in serum triglyceride (TG) regulation. Several studies have reported that the rs651821 locus in the APOA5 gene is associated with serum TG levels in the Chinese population. However, no research has been performed regarding the association between the variants of rs651821 and the risk of hyperlipidemic acute pancreatitis (HLAP). Methods: A case-control study was conducted and is reported following the STROBE guidelines. We enrolled a total of 88 participants in this study (60 HLAP patients and 28 controls). APOA5 was genotyped using PCR and Sanger sequencing. Logistic regression models were conducted to calculate odds ratios and a 95% confidence interval. Results: The genotype distribution of the rs651821 alleles in both groups follow the Hardy-Weinberg distribution. The frequency of the "C" allele in rs651821 was increased in HLAP patients compared to controls. In the recessive model, subjects with the "CC" genotype had an 8.217-fold higher risk for HLAP (OR = 8.217, 95% CI: 1.023-66.01, p = 0.046) than subjects with the "TC+TT" genotypes. After adjusting for sex, the association remained significant (OR = 9.898, 95% CI: 1.176-83.344, p = 0.035). Additionally, the "CC" genotype was related to an increased TG/apolipoprotein B (APOB) ratio and fasting plasma glucose (FPG) levels. Conclusions: Our findings suggest that the C allele of rs651821 in APOA5 increases the risk of HLAP in persons from Southeastern China.
Assuntos
Apolipoproteínas A , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Predisposição Genética para Doença/genética , Estudos de Casos e Controles , Doença Aguda , Polimorfismo de Nucleotídeo Único/genética , Pancreatite/genética , Genótipo , China , Frequência do Gene/genética , TriglicerídeosRESUMO
BACKGROUND: Biallelic pathogenic variants in APOA5 are an infrequent cause of familial chylomicronemia syndrome characterized by severe, refractory hypertriglyceridemia (HTG), and fasting plasma triglyceride (TG) >10 mmol/L (>875 mg/dL). The TG phenotype of heterozygous individuals with one copy of a pathogenic APOA5 variant is less familiar. We evaluated the longitudinal TG phenotype of individuals with a single pathogenic APOA5 variant allele. METHODS: Medically stable outpatients from Ontario, Canada were selected for study based on having: 1) a rare pathogenic APOA5 variant in a single allele; and 2) at least three serial fasting TG measurements obtained over >1.5 years of follow-up. RESULTS: Seven patients were followed for a mean of 5.3 ± 3.7 years. Fasting TG levels varied widely both within and between patients. Three patients displayed at least one normal TG measurement (<2.0 mmol/L or <175 mg/dL). All patients displayed mild-to-moderate HTG (2 to 9.9 mmol/L or 175 to 875 mg/dL) at multiple time points. Five patients displayed at least one severe HTG measurement. 10%, 54%, and 36% of all TG measurements were in normal, mild-to-moderate, and severe HTG ranges, respectively. CONCLUSIONS: Heterozygosity for pathogenic variants in APOA5 is associated with highly variable TG phenotypes both within and between patients. Heterozygosity confers susceptibility to elevated TG levels, with secondary factors likely modulating the phenotypic severity.
Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Humanos , Triglicerídeos , Apolipoproteína A-V/genética , Heterozigoto , Hiperlipoproteinemia Tipo I/genética , Fenótipo , Hipertrigliceridemia/genéticaRESUMO
OBJECTIVES: Type 2 diabetic Mellitus (T2DM) is the most common systemic and endocrine disease in humans, and diabetic nephropathy is one of the most serious complications of this disorder. The polymorphisms in the apolipoprotein A5 (ApoA5) gene are strongly related to hypertriglyceridemia and are considered a predisposing factor for diabetic nephropathy. The current study proposed to examine the association of APOA5-S19W polymorphism with serum lipids levels in patients with type 2 diabetic nephropathy in Mazandaran province. METHODS: This case-control study was designed to determine the association of APOA5-S19W polymorphism with plasma lipid profile in 161 T2DM patients with nephropathy (DN+), without nephropathy (DN-), and in 58 healthy individuals. Lipid profile values were measured using Pars Azmoun commercial kits. S19W variant, one of the polymorphisms of the APOA5 gene, was determined by PCR-restriction fragment length polymorphism (PCR-RFLP) and Taq1 restriction enzyme. RESULTS: In comparison between the three groups, DN+ had a higher mean TG than DN- and the control group (p<0.001). The incidence of the G allele in DN+ was not significant compared to groups of DN-. Comparing the relationship between the mean of biochemical variables with CC and CG genotypes showed that the mean level of TG in people with CC genotype was increased compared to people with CG genotype in diabetic patients. However, this increase was not significant (p=0.19). CONCLUSIONS: There was no association between SNP APOA5 S19W and serum lipids in diabetic patients with and without nephropathy.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Apolipoproteínas A/genética , Apolipoproteína A-V/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para DoençaRESUMO
OBJECTIVE: The aim of this study was to determine frequency and associations between APOA5 c.56C>G, -1131T>C, c.553G>T, and APOC3 -482C>T and SstI gene polymorphisms with hypertriglyceridemia. METHODS: Under a case-control study model, 135 hypertriglyceridemic and 178 normotriglyceridemic control participants were recruited. Polymerase chain reaction and restriction fragment length polymorphism methods were utilized for genotyping. Statistical calculations were performed by comparing allele and genotype frequencies between groups. Clinical characteristics were compared between groups and intra-group genotypes. RESULTS: APOC3 gene -482C>T and SstI polymorphic genotypes and allele frequencies were significantly higher in hypertriglyceridemic group (genotype frequencies, p=0.035, p=0.028, respectively). Regression analysis under unadjusted model confirmed that APOC3 -482C>T and SstI polymorphisms were significantly contributing to have hypertriglyceridemia (p=0.02, odds ratio [OR]=1.831 (95% confidence interval [CI] 1.095-3.060); p=0.04, OR=1.812 (1.031-3.183), respectively). APOA5 c.56C>G was in complete linkage disequilibrium with APOA5 c.553G>T polymorphism (D'=1). CONCLUSION: For the first time in a population sample from Turkey, among the five polymorphisms of APOA5 and APOC3 genes investigated, APOC3 -482C>T and SstI polymorphisms were associated with elevated serum TG levels, while APOA5 c.56C>G, -1131T>C, and c.553G>T polymorphisms were not.
Assuntos
Apolipoproteína A-V , Apolipoproteína C-III , Hipertrigliceridemia , Humanos , Apolipoproteína A-V/genética , Apolipoproteína C-III/genética , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Haplótipos , Hipertrigliceridemia/genética , Polimorfismo de Nucleotídeo Único , TriglicerídeosRESUMO
OBJECTIVE: High triglyceride (TG) levels are associated with an increased risk for atherosclerotic cardiovascular disease (ASCVD) and pancreatitis. The objectives for this study were to evaluate for the coexistence of severe HTG and pancreatitis in two different geographic regions of Turkey and to identify rare variants that cause monogenic HTG in our country. METHODS: In our study from 2014 to 2019, patients with severe HTG who presented to the endocrinology outpatient clinics with TG levels >500 mg/dL (5.7 mmol/L) were evaluated. The LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE genes were sequenced using next generation sequencing to screen for potentially pathogenic variants. RESULTS: Potentially pathogenic variants were identified in 64 (47.1%) of 136 patients. Variants in LPL were seen in 42 (30.9%) cases, APOA5 variants in 10 (7.4%) cases, APOC2 variants in 5 (3.7%) cases, LMF1 variants in 5 (3.7%) cases, and APOE mutations in 2 (1.5%) cases. In the subgroup that experienced pancreatitis (n = 76, 56.3%), LPL variants were seen at higher frequency (P <0.001) than in the subgroup with no history of pancreatitis (n = 60, 43.7%). Patients who developed pancreatitis (56.3%) demonstrated a median TG of 2083 mg/dL (23.5 mmol/L), and patients without pancreatitis (43.7%) demonstrated a median TG of 1244.5 mg/dL (14.1 mmol/L) (P <0.001). CONCLUSION: Accurate approach to HTG diagnosis is important for the prevention of pancreatitis and ASCVD. Evaluation of variants in primary HTG after excluding secondary causes may help provide a patient-centric precision treatment plan.