Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(2): 92-106, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941255

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme with a complex mechanism of allosteric regulation found in nearly all living organisms. Class I RNRs are composed of two proteins, a large α-subunit (R1) and a smaller ß-subunit (R2) that exist as homodimers, that combine to form an active heterotetramer. Aquifex aeolicus is a hyperthermophilic bacterium with an unusual RNR encoding a 346-residue intein in the DNA sequence encoding its R2 subunit. We present the first structures of the A. aeolicus R1 and R2 (AaR1 and AaR2, respectively) proteins as well as the biophysical and biochemical characterization of active and inactive A. aeolicus RNR. While the active oligomeric state and activity regulation of A. aeolicus RNR are similar to those of other characterized RNRs, the X-ray crystal structures also reveal distinct features and adaptations. Specifically, AaR1 contains a ß-hairpin hook structure at the dimer interface, which has an interesting π-stacking interaction absent in other members of the NrdAh subclass, and its ATP cone houses two ATP molecules. We determined structures of two AaR2 proteins: one purified from a construct lacking the intein (AaR2) and a second purified from a construct including the intein sequence (AaR2_genomic). These structures in the context of metal content analysis and activity data indicate that AaR2_genomic displays much higher iron occupancy and activity compared to AaR2, suggesting that the intein is important for facilitating complete iron incorporation, particularly in the Fe2 site of the mature R2 protein, which may be important for the survival of A. aeolicus in low-oxygen environments.


Assuntos
Proteínas de Bactérias/química , Ribonucleotídeo Redutases/química , Regulação Alostérica , Aquifex/química , Aquifex/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/metabolismo
2.
J Biol Chem ; 296: 100609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33811858

RESUMO

The neurotransmitter:sodium symporter (NSS) homolog LeuT from Aquifex aeolicus has proven to be a valuable model for studying the transport mechanism of the NSS family. Crystal structures have captured LeuT in key conformations visited during the transport cycle, allowing for the construction of a nearly complete model of transport, with much of the conformational dynamics studied by computational simulations. Here, we report crystal structures of LeuT representing new intermediate conformations between the outward-facing open and occluded states. These structures, combined with binding and accessibility studies, reveal details of conformational dynamics that can follow substrate binding at the central substrate binding site (S1) of LeuT in outward-facing states, suggesting a potential competition for direction between the outward-open and outward-occluded states at this stage during substrate transport. Our structures further support an intimate interplay between the protonation state of Glu290 and binding of Na1 that may ultimately regulate the outward-open-to-occluded transition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Sódio/metabolismo , Aquifex/metabolismo , Cristalografia por Raios X , Leucina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Simportadores/química , Simportadores/metabolismo , Termodinâmica
3.
Angew Chem Int Ed Engl ; 60(24): 13323-13330, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33665933

RESUMO

The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors. Its molecular mechanism as well as the evolutionary significance are yet unknown. Here we solved its 3.4 Šresolution electron cryo-microscopic structure and discovered a novel dimeric structure mediated by subunit I (CoxA2) that would be essential for naphthoquinol binding and oxidation. The unique structural features in both proton and oxygen pathways suggest an evolutionary adaptation of this oxidase to its hyperthermophilic environment. Our results add a new conceptual understanding of structural variation of cytochrome c oxidases in different species.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Aquifex/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Dimerização , Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Heme/química , Naftoquinonas/química , Naftoquinonas/metabolismo , Oxirredução , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1862(5): 148385, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516769

RESUMO

Cytochrome bc1 complexes are energy-transducing enzymes and key components of respiratory electron chains. They contain Rieske 2Fe2S proteins that absorb very weakly in the visible absorption region compared to the heme cofactors of the cytochromes, but are known to yield photoproducts. Here, the photoreactions of isolated Rieske proteins from the hyperthermophilic bacterium Aquifex aeolicus are studied in two redox states using ultrafast transient fluorescence and absorption spectroscopy. We provide evidence, for the first time in iron­sulfur proteins, of very weak fluorescence of the excited state, in the oxidized as well as the reduced state. The excited states of the oxidized and reduced forms decay in 1.5 ps and 30 ps, respectively. In both cases they give rise to product states with lifetimes beyond 1 ns, reflecting photo-reduction of oxidized centers as well as photo-oxidation of reduced centers. Potential reaction partners are discussed and studied using site-directed mutagenesis. For the reduced state, a nearby disulfide bridge is suggested as an electron acceptor. The resulting photoproducts in either state may play a role in photoactivation processes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fluorescência , Ferro/metabolismo , Fotoquímica , Enxofre/metabolismo , Aquifex/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferro/química , Oxirredução , Enxofre/química
5.
Microbiology (Reading) ; 167(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350903

RESUMO

The bacterium 'Aquifex aeolicus' is the model organism for the deeply rooted phylum Aquificae. This 'water-maker' is an H2-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. 'A. aeolicus' has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation). Many of its proteins have also been characterized (especially structurally), including many of the enzymes involved in replication, transcription, RNA processing and cell envelope biosynthesis. Enzymes that are of promise for biotechnological applications have been widely investigated in this species. 'A. aeolicus' has also added to our understanding of the origins of life and evolution.


Assuntos
Gases/metabolismo , Compostos Inorgânicos/metabolismo , Aquifex/classificação , Aquifex/genética , Aquifex/isolamento & purificação , Aquifex/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Calor Extremo , Hidrogênio/metabolismo , Oxirredução , Água do Mar/química , Água do Mar/microbiologia
6.
Structure ; 28(2): 252-258.e2, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31879128

RESUMO

A hallmark of Gram-negative bacteria is an asymmetric outer membrane containing lipopolysaccharides (LPSs) in the extracellular leaflet. LPS molecules consist of lipid A, which is connected to the inner and outer core oligosaccharides. This LPS core structure is extended in the periplasm by the O antigen, a variable and serotype-defining polysaccharide. In the ABC transporter-dependent LPS biosynthesis pathway, the WzmWzt transporter secretes the complete O antigen across the inner membrane for ligation to the LPS core. In some O antigen transporters, the nucleotide-binding domain of Wzt is fused C-terminally to a carbohydrate-binding domain (CBD) that interacts with the O antigen chain. Here, we present the crystal structure of the Aquifex aeolicus CBD that reveals a conserved flat and a variable twisted jelly-roll surface. The CBD dimer is stabilized by mutual ß strand exchange. Microbial glycan array binding studies with the isolated CBD provide insights into its interaction with complex carbohydrates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos O/metabolismo , Aquifex/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA