Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Nature ; 630(8015): 230-236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811725

RESUMO

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Assuntos
Amônia , Organismos Aquáticos , Archaea , Membrana Celular , Amônia/química , Amônia/metabolismo , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Organismos Aquáticos/ultraestrutura , Archaea/química , Archaea/metabolismo , Archaea/ultraestrutura , Cátions/química , Cátions/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Oxirredução , Polissacarídeos/metabolismo , Polissacarídeos/química
2.
Cell Rep ; 37(8): 110052, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818541

RESUMO

Many prokaryotic cells are covered by an ordered, proteinaceous, sheet-like structure called a surface layer (S-layer). S-layer proteins (SLPs) are usually the highest copy number macromolecules in prokaryotes, playing critical roles in cellular physiology such as blocking predators, scaffolding membranes, and facilitating environmental interactions. Using electron cryomicroscopy of two-dimensional sheets, we report the atomic structure of the S-layer from the archaeal model organism Haloferax volcanii. This S-layer consists of a hexagonal array of tightly interacting immunoglobulin-like domains, which are also found in SLPs across several classes of archaea. Cellular tomography reveal that the S-layer is nearly continuous on the cell surface, completed by pentameric defects in the hexagonal lattice. We further report the atomic structure of the SLP pentamer, which shows markedly different relative arrangements of SLP domains needed to complete the S-layer. Our structural data provide a framework for understanding cell surfaces of archaea at the atomic level.


Assuntos
Archaea/ultraestrutura , Membrana Celular/ultraestrutura , Glicoproteínas de Membrana/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Glicoproteínas de Membrana/metabolismo
3.
FEBS J ; 288(19): 5723-5736, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33783128

RESUMO

Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed ß-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.


Assuntos
Apoenzimas/ultraestrutura , Halobacteriaceae/ultraestrutura , Hexosiltransferases/ultraestrutura , Conformação Proteica , Apoenzimas/química , Archaea/enzimologia , Archaea/ultraestrutura , Cristalografia por Raios X , Halobacteriaceae/enzimologia , Hexosiltransferases/química , Dobramento de Proteína , Sacarose/química , Trissacarídeos/química
4.
Nat Microbiol ; 6(3): 354-365, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495623

RESUMO

Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Ecossistema , Água Subterrânea/microbiologia , Metagenômica/métodos , Agricultura , Archaea/classificação , Archaea/ultraestrutura , Bactérias/classificação , Bactérias/ultraestrutura , Adesão Celular , Proliferação de Células , Água Subterrânea/química , Humanos , Metagenoma , Microbiota , Filogenia , Simbiose
5.
Microbes Environ ; 35(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32493880

RESUMO

Ultra-small microorganisms are ubiquitous in Earth's environments. Ultramicrobacteria, which are defined as having a cell volume of <0.1 µm3, are often numerically dominant in aqueous environments. Cultivated representatives among these bacteria, such as members of the marine SAR11 clade (e.g., "Candidatus Pelagibacter ubique") and freshwater Actinobacteria and Betaproteobacteria, possess highly streamlined, small genomes and unique ecophysiological traits. Many ultramicrobacteria may pass through a 0.2-µm-pore-sized filter, which is commonly used for filter sterilization in various fields and processes. Cultivation efforts focusing on filterable small microorganisms revealed that filtered fractions contained not only ultramicrocells (i.e., miniaturized cells because of external factors) and ultramicrobacteria, but also slender filamentous bacteria sometimes with pleomorphic cells, including a special reference to members of Oligoflexia, the eighth class of the phylum Proteobacteria. Furthermore, the advent of culture-independent "omics" approaches to filterable microorganisms yielded the existence of candidate phyla radiation (CPR) bacteria (also referred to as "Ca. Patescibacteria") and ultra-small members of DPANN (an acronym of the names of the first phyla included in this superphyla) archaea. Notably, certain groups in CPR and DPANN are predicted to have minimal or few biosynthetic capacities, as reflected by their extremely small genome sizes, or possess no known function. Therefore, filtered fractions contain a greater variety and complexity of microorganisms than previously expected. This review summarizes the broad diversity of overlooked filterable agents remaining in "sterile" (<0.2-µm filtered) environmental samples.


Assuntos
Archaea/citologia , Bactérias/citologia , Microbiologia Ambiental , Archaea/classificação , Archaea/fisiologia , Archaea/ultraestrutura , Bactérias/classificação , Bactérias/ultraestrutura , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Filtração/instrumentação , Filogenia
6.
Nucleic Acids Res ; 48(12): 6906-6918, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459340

RESUMO

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3'-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.


Assuntos
Desulfurococcaceae/genética , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA de Transferência/ultraestrutura , Archaea/genética , Archaea/ultraestrutura , Escherichia coli/genética , Metilação , Filogenia , RNA de Transferência/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/ultraestrutura
7.
Nature ; 577(7791): 519-525, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942073

RESUMO

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Células Eucarióticas/classificação , Modelos Biológicos , Células Procarióticas/classificação , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestrutura , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Evolução Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiologia , Lipídeos/análise , Lipídeos/química , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , Simbiose
8.
J Basic Microbiol ; 58(11): 928-937, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30160784

RESUMO

The Buda Thermal Karst System (BTKS) is an extensive active hypogenic cave system located beneath the residential area of the Hungarian capital. At the river Danube, several thermal springs discharge forming spring caves. To reveal and compare the morphological structure and prokaryotic diversity of reddish-brown biofilms developed on the carbonate rock surfaces of the springs, scanning electron microscopy (SEM), and molecular cloning were applied. Microbial networks formed by filamentous bacteria and other cells with mineral crystals embedded in extracellular polymeric substances were observed in the SEM images. Biofilms were dominated by prokaryotes belonging to phyla Proteobacteria, Chloroflexi and Nitrospirae (Bacteria) and Thaumarchaeota (Archaea) but their abundance showed differences according to the type of the host rock, geographic distance, and different water exchange. In addition, representatives of phyla Acidobacteria, Actinobacteria, Caldithrix, Cyanobacteria, Firmicutes Gemmatimonadetes, and several candidate divisions of Bacteria as well as Crenarchaeota and Euryarchaeota were detected in sample-dependent higher abundance. The results indicate that thermophilic, anaerobic sulfur-, sulfate-, nitrate-, and iron(III)-reducing chemoorganotrophic as well as sulfur-, ammonia-, and nitrite-oxidizing chemolithotrophic prokaryotes can interact in the studied biofilms adapted to the unique and extreme circumstances (e.g., aphotic and nearly anoxic conditions, oligotrophy, and radionuclide accumulation) in the thermal karst springs.


Assuntos
Archaea/fisiologia , Bactérias Termodúricas/fisiologia , Biofilmes , Fontes Termais/microbiologia , Archaea/classificação , Archaea/genética , Archaea/ultraestrutura , Bactérias Termodúricas/classificação , Bactérias Termodúricas/genética , Bactérias Termodúricas/ultraestrutura , Biodiversidade , Crescimento Quimioautotrófico , DNA Arqueal/genética , DNA Bacteriano/genética , Fontes Termais/química , Hungria , Consórcios Microbianos/genética , Microscopia Eletrônica de Varredura , RNA Ribossômico 16S/genética
9.
Mol Biol Cell ; 29(13): 1675-1681, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30001185

RESUMO

Since the identification of the archaeal domain in the mid-1970s, we have collected a great deal of metagenomic, biochemical, and structural information from archaeal species. However, there is still little known about how archaeal cells organize their internal cellular components in space and time. In contrast, live-cell imaging has allowed bacterial and eukaryotic cell biologists to learn a lot about biological processes by observing the motions of cells, the dynamics of their internal organelles, and even the motions of single molecules. The explosion of knowledge gained via live-cell imaging in prokaryotes and eukaryotes has motivated an ever-improving set of imaging technologies that could allow analogous explorations into archaeal biology. Furthermore, previous studies of essential biological processes in prokaryotic and eukaryotic organisms give methodological roadmaps for the investigation of similar processes in archaea. In this perspective, we highlight a few fundamental cellular processes in archaea, reviewing our current state of understanding about each, and compare how imaging approaches helped to advance the study of similar processes in bacteria and eukaryotes.


Assuntos
Archaea/citologia , Imageamento Tridimensional , Archaea/ultraestrutura , Divisão Celular , Forma Celular , Segregação de Cromossomos , Citoesqueleto/metabolismo , Replicação do DNA
10.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625978

RESUMO

Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Assuntos
Archaea/classificação , Archaea/ultraestrutura , Metano/metabolismo , Simbiose , Anaerobiose , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Deltaproteobacteria/ultraestrutura , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Consórcios Microbianos , Microscopia Eletrônica , Oxirredução , Filogenia
11.
Trends Microbiol ; 26(4): 351-362, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29452953

RESUMO

Each of the three domains of life exhibits a unique motility structure: while Bacteria use flagella, Eukarya employ cilia, and Archaea swim using archaella. Since the new name for the archaeal motility structure was proposed, in 2012, a significant amount of new data on the regulation of transcription of archaella operons, the structure and function of archaellum subunits, their interactions, and cryo-EM data on in situ archaellum complexes in whole cells have been obtained. These data support the notion that the archaellum is evolutionary and structurally unrelated to the flagellum, but instead is related to archaeal and bacterial type IV pili and emphasize that it is a motility structure unique to the Archaea.


Assuntos
Archaea/fisiologia , Citoesqueleto/fisiologia , Locomoção , Archaea/ultraestrutura , Citoesqueleto/ultraestrutura , Proteínas de Fímbrias , Flagelos/fisiologia , Flagelos/ultraestrutura , Fragmentos de Peptídeos
12.
J Microbiol ; 55(12): 919-926, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214488

RESUMO

Prokaryotic microbes possess a variety of appendages on their cell surfaces. The most commonly known surface appendages of bacteria include flagella, pili, curli, and spinae. Although archaea have archaella (archaeal flagella) and various types of pili that resemble those in bacteria, cannulae, and hami are unique to archaea. Typically involved in cell motility, flagella, the thickest appendages, are 20-26 nm and 10-14 nm wide in bacteria and archaea, respectively. Bacterial and archaeal pili are distinguished by their thin, short, hair-like structures. Curli appear as coiled and aggregative thin fibers, whereas spinae are tubular structures 50-70 nm in diameter in bacteria. Cannulae are characterized by ∼25 nm-wide tubules that enter periplasmic spaces and connect neighboring archaeal cells. Hami are 1-3 µm in length and similar to barbed grappling hooks for attachment to bacteria. Recent advances in specimen preparation methods and image processing techniques have made cryo-transmission electron microscopy an essential tool for in situ structural analysis of microbes and their extracellular structures.


Assuntos
Archaea/ultraestrutura , Bactérias/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Microscopia Eletrônica de Transmissão
13.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28426242

RESUMO

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Fímbrias Bacterianas/ultraestrutura , Poro Nuclear/química , Imagem Óptica/métodos , Células Procarióticas/ultraestrutura , Archaea/metabolismo , Archaea/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/história , Tomografia com Microscopia Eletrônica/instrumentação , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , História do Século XX , História do Século XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Imagem Óptica/história , Imagem Óptica/instrumentação , Células Procarióticas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
14.
J Microbiol Biotechnol ; 27(2): 321-334, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27780961

RESUMO

Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus, were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Reatores Biológicos , Consórcios Microbianos , Esgotos/microbiologia , Agricultura , Anaerobiose , Archaea/genética , Archaea/ultraestrutura , Biocombustíveis/microbiologia , Impressões Digitais de DNA/métodos , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Methanobacteriaceae/genética , Methanobacteriaceae/isolamento & purificação , Consórcios Microbianos/genética , Microscopia , Filogenia , RNA Ribossômico 16S/genética , Esgotos/análise
15.
Curr Microbiol ; 74(2): 284-297, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27900448

RESUMO

The signal recognition particle (SRP) and its receptor constitute universally conserved and essential cellular machinery that controls the proper membrane localization of nascent polypeptides with the transmembrane domain. In the past decade, there has been an immense advancement in our understanding of this targeting machine in all three domains of life. A significant portion of such progress came from the structural analysis of archaeal SRP components. Despite the availability of structural insights from different archaeal SRP components, little is known about protein translocation in this domain of life compared to either bacteria or eukaryotes. One of the primary reasons being limited availability of the genetic and cell biological tools in archaea. In the present review, an attempt has been made to explore the structural information available for archaeal SRP components to gain insights into the protein translocation mechanism of this group of organisms. Besides, many exciting avenues of archaeal research possible using the recently developed genetic and cell biological tools for some species have been identified.


Assuntos
Archaea/fisiologia , Proteínas Arqueais/metabolismo , Proteínas de Membrana/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Archaea/metabolismo , Archaea/ultraestrutura , Transporte Proteico , Partícula de Reconhecimento de Sinal/ultraestrutura
16.
mBio ; 7(5)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27624130

RESUMO

UNLABELLED: Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. IMPORTANCE: The replication of enveloped viruses has been extensively studied in eukaryotes but has remained unexplored for enveloped viruses infecting Archaea Here, we provide a sequential view on the assembly and egress of SSV1, a prototypic archaeal virus. The observed process is highly similar to the budding of eukaryotic enveloped viruses, including human immunodeficiency virus, influenza virus, and Ebola virus. The present study is the first to characterize such a phenomenon in archeal cells, showing that membrane budding is not an exclusive feature of eukaryotic viruses. Our results provide significant insights into the biogenesis and architecture of unique, spindle-shaped virions that infect archaea. Furthermore, our findings open doors for future inquiries into (i) the evolution of the virus budding process, (ii) mechanistic details of virus-mediated membrane scission in Archaea, and (iii) elucidation of virus- and host-encoded molecular players responsible for archaeal membrane and surface remodeling.


Assuntos
Archaea/virologia , Fuselloviridae/fisiologia , Liberação de Vírus , Archaea/ultraestrutura , Tomografia com Microscopia Eletrônica , Fuselloviridae/ultraestrutura
17.
Sci Rep ; 6: 23747, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030530

RESUMO

Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with "Ca. Nitrosotenuis chungbukensis"), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C-33 °C) and neutrophilic (pH 5.0-7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name "Candidatus Nitrosotenuis cloacae" for the strain SAT1.


Assuntos
Amônia/metabolismo , Archaea/genética , Processos Autotróficos/genética , Genoma Arqueal , Águas Residuárias/microbiologia , Archaea/classificação , Archaea/metabolismo , Archaea/ultraestrutura , Tamanho do Genoma , Humanos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
18.
Nat Rev Microbiol ; 14(4): 205-20, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26923112

RESUMO

Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.


Assuntos
Archaea/ultraestrutura , Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Citoesqueleto/metabolismo , Processamento de Imagem Assistida por Computador
20.
Extremophiles ; 19(2): 515-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663452

RESUMO

Halophilic archaea offer a potential source for production of polyhydroxyalkanoates (PHAs). Hence, the experiments were carried out with five extremely halophilic archaeal isolates to determine the highest PHA-producing strain. PHA production of each isolates was separately examined in cheap carbon sources such as corn starch, sucrose, whey, apple, melon and tomato wastes. Corn starch was found to be a fairly effective substrate for PHA production. Among the strains studied here, the strain with the highest capability for PHA biosynthesis was found to be 1KYS1. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that 1KYS1 closely related to species of the genus Natrinema. The closest phylogenetic similarity was with the strain of Natrinema pallidum JCM 8980 (99 %). PHA content of 1KYS1 was about 53.14 % of the cell dry weight when starch was used as a carbon source. The formation of large and uniform PHA granules was confirmed by transmission electron microscopy and the biopolymer was identified as poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV). PHBV produced by 1KYS1 was blended with low molar mass polyethylene glycol (PEG 300) to prepare biocompatible films for drug delivery. Rifampicin was used as a model drug and its release from PHBV films was investigated at pH 7.4, 37 °C. It was found that PHBV films obtained from 1KYS1 were very effective for drug delivery. In conclusion, PHBV of 1KYS1 may have a potential usage in drug delivery applications.


Assuntos
Archaea/metabolismo , Poliésteres/metabolismo , Archaea/genética , Archaea/ultraestrutura , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA