Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.327
Filtrar
1.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747276

RESUMO

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Arginina , Aripiprazol , Varredura Diferencial de Calorimetria , Lisina , Solubilidade , beta-Ciclodextrinas , Aripiprazol/química , Arginina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Lisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Liofilização , Antipsicóticos/química , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Composição de Medicamentos , Química Farmacêutica/métodos
2.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691892

RESUMO

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Assuntos
Antibacterianos , Arginina , Testes de Sensibilidade Microbiana , Triptofano , Triptofano/química , Triptofano/farmacologia , Animais , Arginina/química , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Camundongos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infecções Bacterianas/tratamento farmacológico , Humanos , Escherichia coli/efeitos dos fármacos
3.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696732

RESUMO

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Assuntos
Arginina , Nanopartículas , Nanopartículas/química , Adsorção , Arginina/química , Concentração de Íons de Hidrogênio , Polimerização , Dióxido de Silício/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
4.
Biomacromolecules ; 25(5): 2838-2851, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38567844

RESUMO

A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.


Assuntos
Arginina , Lisina , Lisina/química , Arginina/química , Concentração de Íons de Hidrogênio , Ureia/química
5.
J Hazard Mater ; 471: 134334, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38642498

RESUMO

The spectral database-based mass spectrometry (MS) matching strategy is versatile for structural annotating in ingredient fluctuation profiling mediated by external interferences. However, the systematic variability of MS pool attributable to aliasing peaks and inadequacy of present spectral database resulted in a substantial metabolic feature depletion. An amended procedure termed multiple-charges overlap peaks extraction algorithm (MCOP) was proposed involving identifying collision-trigged dissociation precursor ions through iteratively matching mass features of fragmentations to expand the spectral reference library. We showcased the versatility and utility of established strategy in an investigation centered on the stimulation of milk mediated by diphenylolpropane (BPA). MCOP enabled efficient unknown annotations at metabolite-lipid-protein level, which elevated the accuracy of substance annotation to 85.3% after manual validation. Arginase and α-amylase (|r| > 0.75, p < 0.05) were first identified as the crucial issues via graph neural network-based virtual screening in the abnormal metabolism of urea triggered by BPA, resulting in the accumulation of arginine (original: 1.7 µg kg-1 1.7 times) and maltodextrin (original: 6.9 µg kg-1 2.9 times) and thus, exciting the potential dietary risks. Conclusively, MCOP demonstrated generalisation and scalability and substantially advanced the discovery of unknown metabolites for complex matrix samples, thus deciphering dark matter in multi-omics.


Assuntos
Leite , Leite/química , Animais , Algoritmos , alfa-Amilases/metabolismo , Redes Neurais de Computação , Espectrometria de Massas , Ureia/química , Arginina/química , Contaminação de Alimentos/análise
6.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563123

RESUMO

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Assuntos
Arginina , Canal de Potássio ERG1 , Simulação de Dinâmica Molecular , Venenos de Escorpião , Animais , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
7.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649155

RESUMO

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Assuntos
Arginina , Lipossomos , Arginina/química , Arginina/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , RNA/metabolismo , RNA/química , RNA/genética , Exossomos/metabolismo , Exossomos/genética , Exossomos/química , Transferência Ressonante de Energia de Fluorescência
8.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677005

RESUMO

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Assuntos
Arginina , Hidroliases , Hidroliases/química , Hidroliases/metabolismo , Hidroliases/genética , Arginina/química , Rhodococcus equi/enzimologia , Rhodococcus equi/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Domínio Catalítico
9.
Arch Biochem Biophys ; 756: 110011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649133

RESUMO

Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.


Assuntos
Arginina , Domínio Catalítico , Fosfato de Piridoxal , Transaminases , Transaminases/metabolismo , Transaminases/química , Arginina/química , Arginina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares
10.
J Am Chem Soc ; 146(12): 8394-8406, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477601

RESUMO

Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.


Assuntos
Arginina , Agregados Proteicos , Arginina/química , Guanidina , Simulação de Dinâmica Molecular , Amiloide
11.
J Clin Lab Anal ; 38(7): e25030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525916

RESUMO

BACKGROUND: The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS: Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS: We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS: The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.


Assuntos
Arginina , Dineínas do Citoplasma , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Metilação , Arginina/metabolismo , Arginina/química , Humanos , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Processamento de Proteína Pós-Traducional , Dineínas/metabolismo , Dineínas/genética , Dineínas/química , Sequência de Aminoácidos
12.
ACS Appl Mater Interfaces ; 16(9): 11159-11171, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385360

RESUMO

For the improved delivery of cancer therapeutics and imaging agents, the conjugation of cell-penetrating peptides (CPPs) increases the cellular uptake and water solubility of agents. Among the various CPPs, arginine-rich peptides have been the most widely used. Combining CPPs with enzyme-responsive peptides presents an innovative strategy to target specific intracellular enzymes in cancer cells and when combined with the appropriate click chemistry can enhance theranostic drug delivery through the formation of intracellular self-assembled nanostructures. However, one drawback of CPPs is their high positive charge which can cause nonspecific binding, leading to off-target accumulation and potential toxicity. Hence, balancing cell-specific penetration, toxicity, and biocompatibility is essential for future clinical efficacy. We synthesized six cancer-specific, legumain-responsive RnAANCK peptides containing one to six arginine residues, with legumain being an asparaginyl endopeptidase that is overexpressed in aggressive prostate tumors. When conjugated to Alexa Fluor 488, R1-R6AANCK peptides exhibited a concentration- and time-dependent cell penetration in prostate cancer cells, which was higher for peptides with higher R values, reaching a plateau after approximately 120 min. Highly aggressive DU145 prostate tumor cells, but not less aggressive LNCaP cells, self-assembled nanoparticles in the cytosol after the cleavage of the legumain-specific peptide. The in vivo biocompatibility was assessed in mice after the intravenous injection of R1-R6AANCK peptides, with concentrations ranging from 0.0125 to 0.4 mmol/kg. The higher arginine content in R4-6 peptides showed blood and urine indicators for the impairment of bone marrow, liver, and kidney function in a dose-dependent manner, with instant hemolysis and morbidity in extreme cases. These findings underscore the importance of designing peptides with the optimal arginine residue length for a proper balance of cell-specific penetration, toxicity, and in vivo biocompatibility.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Animais , Camundongos , Arginina/química , Peptídeos Penetradores de Células/química , Neoplasias/tratamento farmacológico
13.
Nucleic Acids Res ; 52(7): 3989-4001, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340338

RESUMO

Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.


Assuntos
Arginina , Fosfosserina , Biossíntese de Proteínas , Proteínas Quinases , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Arginina/metabolismo , Arginina/química , Fosfosserina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fosforilação , Evolução Molecular
14.
Adv Sci (Weinh) ; 11(16): e2308493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380492

RESUMO

Supramolecular chirality-mediated selective interaction among native assemblies is essential for precise disease diagnosis and treatment. Herein, to fully understand the supramolecular chiral binding affinity-achieved therapeutic efficiency, supramolecular chiral nanoparticles (WP5⊃D/L-Arg+DOX+ICG) with the chirality transfer from chiral arginine (D/L-Arg) to water-soluble pillar[5]arene (WP5) are developed through non-covalent interactions, in which an anticancer drug (DOX, doxorubicin hydrochloride) and a photothermal agent (ICG, indocyanine green) are successfully loaded. Interestingly, the WP5⊃D-Arg nanoparticles show 107 folds stronger binding capability toward phospholipid-composed liposomes compared with WP5⊃L-Arg. The enantioselective interaction further triggers the supramolecular chirality-specific drug accumulation in cancer cells. As a consequence, WP5⊃D-Arg+DOX+ICG exhibits extremely enhanced chemo-photothermal synergistic therapeutic efficacy (tumor inhibition rate of 99.4%) than that of WP5⊃L-Arg+DOX+ICG (tumor inhibition rate of 56.4%) under the same condition. This work reveals the breakthrough that supramolecular chiral assemblies can induce surprisingly large difference in cancer therapy, providing strong support for the significance of supramolecular chirality in bio-application.


Assuntos
Antineoplásicos , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Verde de Indocianina/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Arginina/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Compostos de Amônio Quaternário/química , Calixarenos/química , Estereoisomerismo
15.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401304

RESUMO

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Assuntos
Antifúngicos , Triptofano , Camundongos , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triptofano/química , Lisina/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aminoácidos/farmacologia , Candida albicans , Arginina/química , Testes de Sensibilidade Microbiana
16.
Food Chem ; 446: 138809, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402768

RESUMO

This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.


Assuntos
Actomiosina , Lisina , Animais , Suínos , Actomiosina/química , Lisina/química , Cloreto de Sódio/química , Miosinas/química , Carne/análise , Actinas/metabolismo , Arginina/química , Suplementos Nutricionais
17.
J Phys Chem B ; 128(10): 2347-2359, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416758

RESUMO

Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 µs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.


Assuntos
Simulação de Dinâmica Molecular , RNA , Ligação de Hidrogênio , Peptídeos/química , Proteínas , Arginina/química , Lisina/química , Cátions
18.
J Photochem Photobiol B ; 252: 112867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368636

RESUMO

Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells. To address this unmet need, we generated an ArgMet-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based biosensor, called GEMS, capable of quantitative real-time monitoring of ArgMet dynamics. We optimized these biosensors by using different ArgMet-binding domains, arginine-glycine-rich regions and adjusting the linkers within the biosensors to improve their performance. Using a set of mammalian cell lines and modulators, we demonstrated the applicability of GEMS for monitoring changes in arginine methylation with single-cell and temporal resolution. The GEMS can facilitate the in vitro screening to find potential protein arginine methyltransferase inhibitors and will contribute to a better understanding of the regulation of ArgMet related to differentiation, development and disease.


Assuntos
Arginina , Transferência Ressonante de Energia de Fluorescência , Animais , Arginina/química , Metilação , Regulação da Expressão Gênica , Corantes , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
19.
Int J Pharm ; 654: 123938, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408554

RESUMO

The stability of lactate dehydrogenase (LDH) and ß-galactosidase (ß-gal), incorporated in arginine/pullulan (A/P) mixtures at various weight ratios by lyophilization, was determined. The physicochemical characteristics of various A/P mixtures were assessed. With decreasing A/P ratios, the glass transition temperature of the formulations increased. Furthermore, arginine crystallization due to high relative humidity (RH) exposure was prevented at an A/P weight ratio of 4/6 or less. When stored at 0 % RH / 60 °C for 4 weeks, arginine was superior to pullulan as stabilizer. During storage at 43 % RH / 30 ℃ for 4 weeks, the enzymatic activity of LDH was best retained at an A/P weight ratio of 2/8, while ß-gal activity was relatively well-retained at A/P weight ratios of both 8/2 and 2/8. LDH seemed to be more prone to degradation in the rubbery state. In the glassy state, ß-gal degraded faster than LDH. Solid-state nuclear magnetic resonance spectroscopy showed that (labeled) arginine experienced a different interaction in the two protein samples, reflecting a modulation of long-range correlations of the arginine side chain nitrogen atoms (Nε, Nη). In summary, LDH stabilization in the A/P matrix requires vitrification. Further stabilization difference between LDH and ß-gal may be dependent on the interaction with arginine.


Assuntos
Arginina , Proteínas , Arginina/química , Proteínas/química , Glucanos , L-Lactato Desidrogenase/química , Liofilização/métodos , Estabilidade de Medicamentos
20.
Chembiochem ; 25(6): e202300834, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284327

RESUMO

Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.


Assuntos
Lipossomos , Ácidos Nucleicos , Lipossomos/química , Aminoácidos , Histidina/química , Lisina/química , Transfecção , Arginina/química , Lipídeos/química , Cátions/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA