Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
2.
Bull Exp Biol Med ; 176(5): 607-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730105

RESUMO

The study presents the killer functions of circulating neutrophils: myeloperoxidase activity, the ability to generate ROS, phagocytic activity, receptor status, NETosis, as well as the level of cytokines IL-2, IL-4, IL-6, IL-17A, and IL-18, granulocyte CSF, monocyte chemotactic protein 1, and neutrophil elastase in the serum of patients with uterine myoma and endometrial cancer (FIGO stages I-III). The phagocytic ability of neutrophils in uterine myoma was influenced by serum levels of granulocyte CSF and IL-2 in 54% of the total variance. The degranulation ability of neutrophils in endometrial cancer was determined by circulating IL-18 in 50% of the total variance. In uterine myoma, 66% of the total variance in neutrophil myeloperoxidase activity was explained by a model dependent on blood levels of IL-17A, IL-6, and IL-4. The risk of endometrial cancer increases when elevated levels of monocyte chemotactic protein 1 in circulating neutrophils are associated with reduced ability to capture particles via extracellular traps (96% probability).


Assuntos
Quimiocina CCL2 , Neoplasias do Endométrio , Interleucina-17 , Interleucina-6 , Neutrófilos , Humanos , Feminino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Interleucina-6/sangue , Quimiocina CCL2/sangue , Interleucina-17/sangue , Pessoa de Meia-Idade , Interleucina-4/sangue , Peroxidase/sangue , Peroxidase/metabolismo , Interleucina-18/sangue , Neoplasias Uterinas/sangue , Neoplasias Uterinas/imunologia , Neoplasias Uterinas/patologia , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fagocitose , Leiomioma/sangue , Leiomioma/imunologia , Leiomioma/patologia , Leiomioma/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Elastase de Leucócito/sangue , Elastase de Leucócito/metabolismo , Adulto , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Espécies Reativas de Oxigênio/metabolismo , Idoso , Interleucina-2
4.
Medicine (Baltimore) ; 103(19): e38115, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728509

RESUMO

Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.


Assuntos
Plaquetas , Inflamação , Humanos , Plaquetas/imunologia , Inflamação/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Sepse/imunologia , Sepse/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/sangue , Neutrófilos/imunologia
5.
Biomolecules ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672433

RESUMO

Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , NADPH Oxidases/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Inflamação/patologia
6.
PLoS One ; 19(4): e0298775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662757

RESUMO

BACKGROUND: Activated neutrophils release depolymerized chromatin and protein particles into the extracellular space, forming reticular Neutrophil Extracellular Traps (NETs). This process is accompanied by programmed inflammatory cell death of neutrophils, known as NETosis. Previous reports have demonstrated that NETosis plays a significant role in immune resistance and microenvironmental regulation in cancer. This study sought to characterize the function and molecular mechanism of NETosis-correlated long non-coding RNAs (NCLs) in the prognostic treatment of liver hepatocellular carcinoma (LIHC). METHODS: We obtained the transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and evaluated the expression of NCLs in LIHC. A prognostic signature of NCLs was constructed using Cox and Last Absolute Shrinkage and Selection Operator (Lasso) regression, while the accuracy of model was validated by the ROC curves and nomogram, etc. In addition, we analyzed the associations between NCLs and oncogenic mutation, immune infiltration and evasion. Finally, LIHC patients were classified into four subgroups based on consensus cluster analysis, and drug sensitivity was predicted. RESULTS: After screening, we established a risk model combining 5 hub-NCLs and demonstrated its reliability. Independence checks suggest that the model may serve as an independent predictor of LIHC prognosis. Enrichment analysis revealed a concentration of immune-related pathways in the high-risk group. Immune infiltration indicates that immunotherapy could be more effective in the low-risk group. Upon consistent cluster analysis, cluster subgroup 4 presented a better prognosis. Sensitivity tests showed the distinctions in therapeutic effectiveness among various drugs in different subgroups. CONCLUSION: Overall, we have developed a prognostic signature that can discriminate different LIHC subgroups through the 5 selected NCLs, with the objective of providing LIHC patients a more precise, personalized treatment regimen.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Humanos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Masculino , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Feminino , Transcriptoma , Nomogramas , Biomarcadores Tumorais/genética
7.
J Immunotoxicol ; 21(1): 2345152, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38659406

RESUMO

The recent global resurgence of severe infections caused by the Group A streptococcus (GAS) pathogen, Streptococcus pyogenes, has focused attention on this microbial pathogen, which produces an array of virulence factors, such as the pore-forming toxin, streptolysin O (SOT). Importantly, the interactions of SOT with human neutrophils (PMN), are not well understood. The current study was designed to investigate the effects of pretreatment of isolated human PMN with purified SOT on several pro-inflammatory activities, including generation of reactive oxygen species (ROS), degranulation (elastase release), influx of extracellular calcium (Ca2+) and release of extracellular DNA (NETosis), using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of PMN to SOT alone caused modest production of ROS and elastase release, while pretreatment with the toxin caused significant augmentation of chemoattractant (fMLP)-activated ROS generation and release of elastase by activated PMN. These effects of treatment of PMN with SOT were associated with both a marked and sustained elevation of cytosolic Ca2+concentrations and significant increases in the concentrations of extracellular DNA, indicative of NETosis. The current study has identified a potential role for SOT in augmenting the Ca2+-dependent pro-inflammatory interactions of PMN, which, if operative in a clinical setting, may contribute to hyper-activation of PMN and GAS-mediated tissue injury.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Streptococcus pyogenes , Estreptolisinas , Humanos , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Inflamação/imunologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Elastase Pancreática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/metabolismo
8.
Int Immunopharmacol ; 133: 112085, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626550

RESUMO

Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.


Assuntos
Armadilhas Extracelulares , Fibrose , Neutrófilos , Humanos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Animais , Neutrófilos/imunologia , Doenças Autoimunes/imunologia
9.
Dev Comp Immunol ; 156: 105180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641186

RESUMO

Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils' functional capacity during OS conditions. This should be tested in vivo.


Assuntos
Armadilhas Extracelulares , F2-Isoprostanos , Neutrófilos , Estresse Oxidativo , Peroxidase , Fagocitose , Explosão Respiratória , Animais , Neutrófilos/imunologia , Bovinos , F2-Isoprostanos/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Peroxidase/metabolismo , Células Cultivadas , Feminino , Imunidade Inata , Oxirredução
10.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642131

RESUMO

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CXCL5 , Neoplasias Pulmonares , Macrófagos , Humanos , Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral , Regulação para Cima , Receptor A2A de Adenosina/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo
11.
Ageing Res Rev ; 97: 102297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599524

RESUMO

BACKGROUND: Hepatocellular carcinoma is a common and highly lethal tumour. The tumour microenvironment (TME) plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC). A cell death mechanism, termed NETosis, has been found to play an important role in the TME of HCC. SUMMARY: This review article focuses on the role of NETosis in the TME of HCC, a novel form of cell death in which neutrophils capture and kill microorganisms by releasing a type of DNA meshwork fibres called "NETs". This process is associated with neutrophil activation, local inflammation and cytokines. The study suggests that NETs play a multifaceted role in the development and metastasis of HCC. The article also discusses the role of NETs in tumour proliferation and metastasis, epithelial-mesenchymal transition (EMT), and surgical stress. In addition, the article discusses the interaction of NETosis with other immune cells in the TME and related therapeutic strategies. A deeper understanding of NETosis can help us better understand the complexity of the immune system and provide a new therapeutic basis for the treatment and prevention of HCC. KEY INFORMATION: In conclusion, NETosis is important in the TME of liver. NETs have been shown to contribute to the progression and metastasis of liver cancer. The interaction between NETosis and immune cells in the TME, as well as related therapies, are important areas of research.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/fisiologia , Microambiente Tumoral/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Animais , Metástase Neoplásica , Transição Epitelial-Mesenquimal/fisiologia , Neutrófilos/imunologia , Neutrófilos/patologia , Neutrófilos/metabolismo
12.
Bull Math Biol ; 86(6): 66, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678489

RESUMO

The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.


Assuntos
Apoptose , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Conceitos Matemáticos , Modelos Imunológicos , Neutrófilos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/imunologia , Apoptose/imunologia , Autoantígenos/imunologia , Simulação por Computador , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Neutrófilo/imunologia , Ativação de Macrófagos
13.
Int Immunopharmacol ; 132: 111950, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579564

RESUMO

Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions. Hence, we examined mass spectrometry based post-translational modifications (PTM) of neutrophil proteins in response to pathologically significant stimuli, including high glucose, homocysteine and bacterial lipopolysaccharides representing diabetes-indicator, an activator of thrombosis and pathogen-associated molecule, respectively. Our data revealed that these aforesaid stimulators differentially deamidate, citrullinate, acetylate and methylate neutrophil proteins and align to distinct biological functions associated with degranulation, platelet activation, innate immune responses and metabolic alterations. The PTM patterns in response to high glucose showed an association with neutrophils extracellular traps (NETs) formation, homocysteine induced proteins PTM associated with signaling of systemic lupus erythematosus and lipopolysaccharides induced PTMs were involved in pathways related to cardiomyopathies. Our study provides novel insights into neutrophil PTM patterns and functions in response to varied pathological stimuli, which may serve as a resource to design therapeutic strategies for the management of neutrophil-centred diseases.


Assuntos
Armadilhas Extracelulares , Homocisteína , Lipopolissacarídeos , Neutrófilos , Processamento de Proteína Pós-Traducional , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Homocisteína/metabolismo , Glucose/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Imunidade Inata , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo , Transdução de Sinais
14.
Eur J Immunol ; 54(5): e2350779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38440842

RESUMO

Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.


Assuntos
Armadilhas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Neutrófilos/imunologia , Pneumonia por Pneumocystis/imunologia , Leucotrieno B4/metabolismo , Leucotrieno B4/imunologia , Pneumocystis/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
15.
Kidney Int ; 105(6): 1291-1305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537677

RESUMO

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Modelos Animais de Doenças , Armadilhas Extracelulares , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Neutrófilos , Peroxidase , Espécies Reativas de Oxigênio , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidase/metabolismo , Peroxidase/genética , Camundongos , Humanos , Estresse Oxidativo/imunologia , Camundongos Endogâmicos C57BL , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Glomerulonefrite/etiologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Masculino , Rim/patologia , Rim/imunologia , Transdução de Sinais/imunologia
16.
Cancer Res ; 84(10): 1613-1629, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381538

RESUMO

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFß1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFß1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFß1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , DNA/imunologia , DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem Celular Tumoral , Masculino
17.
Apoptosis ; 29(5-6): 605-619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367202

RESUMO

Atherosclerosis (AS) is a pathological process associated with various cardiovascular diseases. Upon different stimuli, neutrophils release reticular complexes known as neutrophil extracellular traps (NETs). Numerous researches have indicated a strong correlation between NETs and AS. However, its role in cardiovascular disease requires further investigation. By utilizing a machine learning algorithm, we examined the genes associated with NETs that were expressed differently in individuals with AS compared to normal controls. As a result, we identified four distinct genes. A nomogram model was built to forecast the incidence of AS. Additionally, we conducted analysis on immune infiltration, functional enrichment and consensus clustering in AS samples. The findings indicated that individuals with AS could be categorized into two groups, exhibiting notable variations in immune infiltration traits among the groups. Furthermore, to measure the NETs model, the principal component analysis algorithm was developed and cluster B outperformed cluster A in terms of NETs. Additionally, there were variations in the expression of multiple chemokines between the two subtypes. By studying AS NETs, we acquired fresh knowledge about the molecular patterns and immune mechanisms implicated, which could open up new possibilities for AS immunotherapy.


Assuntos
Aterosclerose , Armadilhas Extracelulares , Neutrófilos , Humanos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/genética , Aterosclerose/genética , Aterosclerose/diagnóstico , Aterosclerose/imunologia , Aterosclerose/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Aprendizado de Máquina , Algoritmos , Nomogramas
18.
Cell Mol Immunol ; 21(5): 466-478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409251

RESUMO

Inflammasomes are multiprotein complexes involved in the host immune response to pathogen infections. Thus, inflammasomes participate in many conditions, such as acne. Recently, it was shown that NETosis, a type of neutrophil cell death, is induced by bacterial infection and is involved in inflammatory diseases such as delayed wound healing in patients with diabetes. However, the relationship between inflammasomes and NETosis in the pathogenesis of inflammatory diseases has not been well studied. In this study, we determined whether NETosis is induced in P. acnes-induced skin inflammation and whether activation of the nucleotide-binding domain, leucine-rich family, and pyrin domain-containing-3 (NLRP3) inflammasome is one of the key factors involved in NETosis induction in a mouse model of acne skin inflammation. We found that NETosis was induced in P. acnes-induced skin inflammation in mice and that inhibition of NETosis ameliorated P. acnes-induced skin inflammation. In addition, our results demonstrated that inhibiting inflammasome activation could suppress NETosis induction in mouse skin. These results indicate that inflammasomes and NETosis can interact with each other to induce P. acnes-induced skin inflammation and suggest that targeting NETosis could be a potential treatment for inflammasome-mediated diseases as well as NETosis-related diseases.


Assuntos
Acne Vulgar , Armadilhas Extracelulares , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Inflamassomos/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Acne Vulgar/imunologia , Camundongos , Inflamação/imunologia , Inflamação/patologia , Pele/patologia , Pele/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças
19.
Curr Osteoporos Rep ; 22(2): 280-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418800

RESUMO

PURPOSE OF REVIEW: In this review, we summarize the current evidence that suggests that neutrophils play a key role in facilitating damage to local bone structures. RECENT FINDINGS: Neutrophil infiltration is a hallmark of inflammatory bone diseases such as rheumatoid arthritis (RA) and periodontitis disease (PD). Both of these human diseases are marked by an imbalance in bone homeostasis, favoring the degradation of local bone which ultimately leads to erosions. Osteoclasts, a multinucleated resident bone cell, are responsible for facilitating the turnover of bone and the bone damage observed in these diseases. The involvement of neutrophils and neutrophil extracellular trap formation have recently been implicated in exacerbating osteoclast function through direct and indirect mechanisms. We highlight a recent finding that NET proteins such as histones and elastase can generate non-canonical, inflammatory osteoclasts, and this process is mediated by post-translational modifications such as citrullination and carbamylation, both of which act as autoantigens in RA. It appears that NETs, autoantibodies, modified proteins, cytokines, and osteoclasts all ultimately contribute to local and permanent bone damage in RA and PD. However, more studies are needed to fully understand the role of neutrophils in inflammatory bone diseases.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Neutrófilos , Osteoclastos , Periodontite , Humanos , Neutrófilos/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Periodontite/imunologia , Periodontite/metabolismo , Osteoclastos/metabolismo , Infiltração de Neutrófilos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Autoanticorpos/imunologia , Citocinas/metabolismo , Citocinas/imunologia
20.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181841

RESUMO

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Assuntos
Eosinófilos , Armadilhas Extracelulares , Muco , Neutrófilos , Rinite , Sinusite , Humanos , Sinusite/imunologia , Sinusite/patologia , Rinite/imunologia , Rinite/patologia , Eosinófilos/imunologia , Doença Crônica , Neutrófilos/imunologia , Muco/metabolismo , Masculino , Feminino , Adulto , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Pessoa de Meia-Idade , Viscosidade , Agregação Celular , Idoso , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Rinossinusite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA