Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 96(1-2): 179-196, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29327227

RESUMO

KEY MESSAGE: The promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity. Here we describe the characterization of a novel Caulimoviral promoter isolated from Horseradish Latent Virus (HRLV) and its regulation by multiple stress responsive Transcription factors (TFs) namely DREB1, AREB1 and TGA1a. The activity of full length transcript (Flt-) promoter from HRLV (- 677 to + 283) was investigated in both transient and transgenic assays where we identified H12 (- 427 to + 73) as the highest expressing fragment having ~ 2.5-fold stronger activity than the CaMV35S promoter. The H12 promoter was highly active and near-constitutive in the vegetative and reproductive parts of both Tobacco and Arabidopsis transgenic plants. Interestingly, H12 contains a distinct cluster of cis-elements like dehydration-responsive element (DRE-core; GCCGAC), an ABA-responsive element (ABRE; ACGTGTC) and as-1 element (TGACG) which are known to be induced by cold, drought and pathogen/SA respectively. The specific binding of DREB1, AREB1 and TGA1a to DRE, ABRE and as-1 elements respectively were confirmed by the gel-binding assays using H12 promoter-specific probes. Detailed mutational analysis of the H12 promoter suggested that the presence of DRE-core and as-1 element was indispensable for its activity which was further confirmed by the transactivation assays. Our studies imply that H12 could be a valuable genetic tool for regulated transgene expression under diverse environmental conditions.


Assuntos
Armoracia/metabolismo , Armoracia/virologia , Caulimovirus/genética , Caulimovirus/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Armoracia/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia
2.
J Appl Genet ; 48(3): 295-306, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17666784

RESUMO

Variability and genetic structure of a novel Turnip mosaic virus (TuMV) population from horseradish (Cochlearia armoracia L.) were examined. Over 60 horseradish plants were tested to identify a total of 28 TuMV isolates, constituting the Cochlearia ARmoracia (CAR) TuMV population. Two subgroups of the CAR TuMV isolates could be distinguished: subgroup N did not infect oilseed rape (Brassica napus var. oleifera) cv. Westar plants, while subgroup A infected these plants systemically. Two types of infection of oilseed rape plants were induced by inoculation with the CAR TuMV isolates: systemic mosaic infection and systemic necrotic lesions. The complete sequences of isolates CAR37 (subgroup N) and CAR37A (subgroup A) were determined and compared. The sequences of HC-Pro and CP genes of CAR37 and CAR37A and other isolates of TuMV from other countries were compared to provide some insight into their relatedness. CAR37A, initially regarded as a variant, proved to be very different from CAR37. Re-sequencing after repeated passages confirmed the genetic stability of both isolates.


Assuntos
Armoracia/virologia , Doenças das Plantas/virologia , Tymovirus/patogenicidade , DNA Viral/genética , Imunidade Inata , Filogenia , Folhas de Planta/virologia , Tymovirus/genética , Tymovirus/isolamento & purificação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA