Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929610

RESUMO

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Assuntos
Artérias/enzimologia , Encéfalo/enzimologia , Encefalite/prevenção & controle , Microglia/enzimologia , Muramidase/deficiência , Células Mieloides/enzimologia , Ruído dos Transportes/efeitos adversos , Doenças Vasculares Periféricas/prevenção & controle , Aeronaves , Animais , Artérias/fisiopatologia , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/enzimologia , Encefalite/etiologia , Encefalite/patologia , Deleção de Genes , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Muramidase/genética , Estresse Oxidativo , Doenças Vasculares Periféricas/enzimologia , Doenças Vasculares Periféricas/etiologia , Doenças Vasculares Periféricas/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
2.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011567

RESUMO

When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that deconstruction of the extracellular matrix is essential to remodel smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of internal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content was low. Outward remodeling of these vessels with a 10-20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension, as demonstrated by the straightening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with ß-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity.


Assuntos
Artérias/enzimologia , Artérias/crescimento & desenvolvimento , Elasticidade , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Artérias/diagnóstico por imagem , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Masculino , Organogênese , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X , Remodelação Vascular
3.
Cardiovasc Res ; 117(2): 450-461, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31977009

RESUMO

AIMS: Eva-1 homologue 1 (Eva1a) is a novel protein involved in the regulation of cardiac remodelling and plaque stability, but little is known about its role in re-endothelialization and the development of atherosclerosis (AS). Thus, in the present study, we aimed to elucidate the function of Eva1a in re-endothelialization and AS. METHODS AND RESULTS: Wire injuries of carotid and femoral arteries were established in Eva1a-/- mice. Eva1a-deficient mice were crossed with apolipoprotein E-/- (ApoE-/-) mice to evaluate AS development and re-endothelialization of carotid artery injuries. Denudation of the carotid artery at 3, 5, and 7 days was significantly aggravated in Eva1a-/- mice. The neointima of the femoral artery at 14 and 28 days was consequently exacerbated in Eva1a-/- mice. The area of atherosclerotic lesions was increased in Eva1a-/-ApoE-/- mice. To explore the underlying mechanisms, we performed transwell, scratch migration, cell counting kit-8, and bromodeoxyuridine assays using cultured human aorta endothelial cells (HAECs), which demonstrated that EVA1A promoted HAEC migration and proliferation. Proteomics revealed that the level of actin-related protein 2/3 complex subunit 1B (Arpc1b) was decreased, while Eva1a expression was absent. Arpc1b was found to be a downstream molecule of EVA1A by small interfering RNA transfection assay. Activation of Rac1 and Cdc42 GTPases was also regulated by EVA1A. CONCLUSION: This study provides insights into anti-atherogenesis effects of Eva1a by promoting endothelium repair. Thus, Eva1a is a promising therapeutic target for AS.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Artérias/enzimologia , Aterosclerose/enzimologia , Proliferação de Células , Células Endoteliais/enzimologia , Proteínas de Membrana/metabolismo , Reepitelização , Lesões do Sistema Vascular/enzimologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Artérias/lesões , Artérias/patologia , Aterosclerose/genética , Aterosclerose/patologia , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neointima , Neuropeptídeos , Transdução de Sinais , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
4.
J Cell Physiol ; 236(4): 2333-2351, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32875580

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.


Assuntos
Artérias/enzimologia , Hipercolesterolemia/enzimologia , Pró-Proteína Convertase 9/metabolismo , Doenças Vasculares/enzimologia , Animais , Anticolesterolemiantes/uso terapêutico , Artérias/efeitos dos fármacos , Artérias/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Mutação , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Inibidores de Serina Proteinase/uso terapêutico , Transdução de Sinais , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/genética , Doenças Vasculares/patologia
5.
J Am Heart Assoc ; 9(16): e013849, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32781940

RESUMO

Background Basal release of nitric oxide (NO) from the vascular endothelium regulates the tone of muscular arteries and resistance vasculature. Effects of NO on muscular arteries could be particularly important during exercise when shear stress may stimulate increased NO synthesis. Methods and Results We investigated acute effects of NO synthase inhibition on exercise hemodynamics using NG-monomethyl-l-arginine (l-NMMA), a nonselective NO synthase -inhibitor. Healthy volunteers (n=10, 5 female, 19-33 years) participated in a 2-phase randomized crossover study, receiving l-NMMA (6 mg/kg, iv over 5 minutes) or placebo before bicycle exercise (25-150 W for 12 minutes). Blood pressure, cardiac output (measured by dilution of soluble and inert tracers) and femoral artery diameter were measured before, during, and after exercise. At rest, l-NMMA reduced heart rate (by 16.2±4.3 bpm relative to placebo, P<0.01), increased peripheral vascular resistance (by 7.0±1.4 mmHg per L/min, P<0.001), mean arterial blood pressure (by 8.9±3.5 mmHg, P<0.05), and blunted an increase in femoral artery diameter that occurred immediately before exercise (change in diameter: 0.14±0.04 versus 0.32±0.06 mm after l-NMMA and placebo, P<0.01). During/after exercise l-NMMA had no significant effect on peripheral resistance, cardiac output, or on femoral artery diameter. Conclusions These results suggest that NO plays little role in modulating muscular artery function during exercise but that it may mediate changes in muscular artery tone immediately before exercise.


Assuntos
Artérias/enzimologia , Exercício Físico/fisiologia , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/fisiologia , Vasodilatação/fisiologia , Adulto , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Artérias/fisiologia , Débito Cardíaco/efeitos dos fármacos , Estudos Cross-Over , Inibidores Enzimáticos/farmacologia , Teste de Esforço , Feminino , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Humanos , Masculino , Placebos , Análise de Onda de Pulso/métodos , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Adulto Jovem , ômega-N-Metilarginina/farmacologia
6.
Circ Res ; 127(6): 811-823, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32546048

RESUMO

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Artérias/enzimologia , Aterosclerose/enzimologia , Histona Desacetilases/metabolismo , Quinase I-kappa B/metabolismo , Placa Aterosclerótica , Proteínas Repressoras/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Feminino , Fibrose , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Quinase I-kappa B/genética , Mediadores da Inflamação/metabolismo , Migração e Rolagem de Leucócitos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Monócitos/enzimologia , Monócitos/patologia , Ligação Proteica , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais
7.
J Cardiovasc Pharmacol ; 76(3): 329-336, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569018

RESUMO

Atherosclerosis (AS) is the most common and serious complication in type 2 diabetes mellitus (T2DM). Recent studies have emphasized that inflammation is the main cause of atherosclerosis. Studies have shown that carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) regulates the expression of matrix metallopeptidase 9 (MMP-9) after ischemic stroke to reduce inflammation. The aim of this study was to elucidate potential molecular mechanism of CEACAM1 on the inflammatory response in atherosclerosis. The serum levels of CEACAM1, MMP-9, and tissue inhibitors of metalloproteinase 1 (TIMP-1) in T2DM patients and healthy control was detected. The results showed that the levels of CEACAM1 and TIMP-1 were significantly decreased, and the levels of MMP-9 were significantly higher than those in the control group. Moreover, we also observed the effect of CEACAM1 on atherosclerosis in T2DM rats. Hematoxylin & eosin (HE) staining and oil red staining showed that CEACAM1 recombinant protein reduced intima-media thickness and the area of atherosclerotic plaques. To further explore the molecular mechanism of CEACAM1 regulating MMP-9/TIMP-1, we conducted experiments in rat aorta vascular endothelial cells and rat aorta smooth muscle cells. The result showed that CEACAM1 inhibits inflammatory response via MMP-9/TIMP-1 axis. Taken together, CEACAM1 attenuates diabetic atherosclerosis by inhibition of IκB/NF-κB signal pathway via MMP-9/TIMP-1 axis, which indicate that CEACAM1 is potentially amenable to therapeutic manipulation for clinical application in atherosclerosis in T2DM.


Assuntos
Anti-Inflamatórios/farmacologia , Antígenos CD/farmacologia , Artérias/efeitos dos fármacos , Aterosclerose/prevenção & controle , Moléculas de Adesão Celular/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Proteínas I-kappa B/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Antígenos CD/metabolismo , Artérias/enzimologia , Artérias/patologia , Aterosclerose/enzimologia , Aterosclerose/etiologia , Aterosclerose/patologia , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica , Ratos Wistar , Transdução de Sinais
8.
Cardiovasc Res ; 116(5): 908-915, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746997

RESUMO

PCSK9 degrades low-density lipoprotein cholesterol (LDL) receptors and subsequently increases serum LDL cholesterol. Clinical trials show that inhibition of PCSK9 efficiently lowers LDL cholesterol levels and reduces cardiovascular events. PCSK9 inhibitors also reduce the extent of atherosclerosis. Recent studies show that PCSK9 is secreted by vascular endothelial cells, smooth muscle cells, and macrophages. PCSK9 induces secretion of pro-inflammatory cytokines in macrophages, liver cells, and in a variety of tissues. PCSK9 regulates toll-like receptor 4 expression and NF-κB activation as well as development of apoptosis and autophagy. PCSK9 also interacts with oxidized-LDL receptor-1 (LOX-1) in a mutually facilitative fashion. These observations suggest that PCSK9 is inter-twined with inflammation with implications in atherosclerosis and its major consequence-myocardial ischaemia. This relationship provides a basis for the use of PCSK9 inhibitors in prevention of atherosclerosis and related clinical events.


Assuntos
Artérias/enzimologia , Aterosclerose/enzimologia , Citocinas/metabolismo , Dislipidemias/enzimologia , Mediadores da Inflamação/metabolismo , Inflamação/enzimologia , Pró-Proteína Convertase 9/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Anti-Infecciosos/uso terapêutico , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Dislipidemias/tratamento farmacológico , Dislipidemias/patologia , Dislipidemias/fisiopatologia , Humanos , Hipolipemiantes/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/antagonistas & inibidores , Mecanotransdução Celular , Inibidores de PCSK9 , Placa Aterosclerótica , Fluxo Sanguíneo Regional , Inibidores de Serina Proteinase/uso terapêutico , Estresse Mecânico
9.
Cells ; 9(1)2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877781

RESUMO

Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.


Assuntos
Artérias/enzimologia , Artérias/crescimento & desenvolvimento , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 317(5): H1166-H1172, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603345

RESUMO

Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.


Assuntos
Artérias/efeitos dos fármacos , Insulina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Artérias/enzimologia , Artérias/fisiopatologia , Endotelina-1/metabolismo , Ativação Enzimática , Feminino , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Transdução de Sinais , Sus scrofa
11.
FASEB J ; 33(11): 12888-12899, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499005

RESUMO

Endothelial up-regulation of VCAM-1 at susceptible sites in arteries modulates the recruitment efficiency of inflammatory monocytes that initiates atherosclerotic lesion formation. We reported that hydrodynamic shear stress (SS) mechanoregulates inflammation in human aortic endothelial cells through endoplasmic reticulum (ER) stress via activation of the transcription factor x-box binding protein 1 (XBP1). Here, a microfluidic flow channel that produces a linear gradient of SS along a continuous monolayer of endothelium was used to delve the mechanisms underlying transcriptional regulation of TNF-α-stimulated VCAM-1 expression. High-resolution immunofluorescence imaging enabled continuous detection of platelet endothelial cell adhesion molecule 1 (PECAM-1)-dependent, outside-in signaling as a function of SS magnitude. Differential expression of VCAM-1 and intercellular adhesion molecule 1 (ICAM-1) was regulated by the spatiotemporal activation of MAPKs, ER stress markers, and transcription factors, which was dependent on the mechanosensing of SS through PECAM-1 and PI3K. Inhibition of p38 specifically abrogated the rise to peak VCAM-1 at low SS (2 dyn/cm2), whereas inhibition of ERK1/2 attenuated peak ICAM-1 at high SS (12 dyn/cm2). A shear stress-regulated temporal rise in p38 phosphorylation activated the nuclear translocation of XBP1, which together with the transcription factor IFN regulatory factor 1, promoted maximum VCAM-1 expression. These data reveal a mechanism by which SS sensitizes the endothelium to a cytokine-induced ER stress response to spatially regulate inflammation promoting atherosclerosis.-Bailey, K. A., Moreno, E., Haj, F. G., Simon, S. I., Passerini, A. G. Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium.


Assuntos
Artérias/patologia , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Artérias/enzimologia , Núcleo Celular/metabolismo , Células Cultivadas , Endotélio Vascular/enzimologia , Feminino , Humanos , Fator Regulador 1 de Interferon/metabolismo , Masculino , Fosforilação , Transcrição Gênica , Molécula 1 de Adesão de Célula Vascular/genética
12.
Br J Pharmacol ; 176(24): 4625-4638, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31404942

RESUMO

BACKGROUND AND PURPOSE: Microsomal PGE synthase-1 (mPGES-1), the inducible synthase that catalyses the terminal step in PGE2 biosynthesis, is of high interest as therapeutic target to treat inflammation. Inhibition of mPGES-1 is suggested to be safer than traditional NSAIDs, and recent data demonstrate anti-constrictive effects on vascular tone, indicating new therapeutic opportunities. However, there is a lack of potent mPGES-1 inhibitors lacking interspecies differences for conducting in vivo studies in relevant preclinical disease models. EXPERIMENTAL APPROACH: Potency was determined based on the reduction of PGE2 formation in recombinant enzyme assays, cellular assay, human whole blood assay, and air pouch mouse model. Anti-inflammatory properties were assessed by acute paw swelling in a paw oedema rat model. Effect on vascular tone was determined with human ex vivo wire myography. KEY RESULTS: We report five new mPGES-1 inhibitors (named 934, 117, 118, 322, and 323) that selectively inhibit recombinant human and rat mPGES-1 with IC50 values of 10-29 and 67-250 nM respectively. The compounds inhibited PGE2 production in a cellular assay (IC50 values 0.15-0.82 µM) and in a human whole blood assay (IC50 values 3.3-8.7 µM). Moreover, the compounds blocked PGE2 formation in an air pouch mouse model and reduced acute paw swelling in a paw oedema rat model. Human ex vivo wire myography analysis showed reduced adrenergic vasoconstriction after incubation with the compounds. CONCLUSION AND IMPLICATIONS: These mPGES-1 inhibitors can be used as refined tools in further investigations of the role of mPGES-1 in inflammation and microvascular disease.


Assuntos
Anti-Inflamatórios/farmacologia , Artérias/efeitos dos fármacos , Dinoprostona/biossíntese , Edema/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Tono Muscular/efeitos dos fármacos , Prostaglandina-E Sintases/antagonistas & inibidores , Células A549 , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Artérias/enzimologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/imunologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Escherichia coli/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Miografia , Prostaglandina-E Sintases/sangue , Prostaglandina-E Sintases/genética
13.
Cardiovasc Res ; 115(9): 1408-1415, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847484

RESUMO

Coronary heart disease and stroke, the two most common cardiovascular diseases worldwide, are triggered by complications of atherosclerosis. Atherosclerotic plaques are initiated by a maladaptive immune response triggered by accumulation of lipids in the artery wall. Hence, disease is influenced by several non-modifiable and modifiable risk factors, including dyslipidaemia, hypertension, smoking, and diabetes. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway of tryptophan (Trp) degradation, is modulated by inflammation and regarded as a key molecule driving immunotolerance and immunosuppressive mechanisms. A large body of evidence indicates that IDO-mediated Trp metabolism is involved directly or indirectly in atherogenesis. This review summarizes evidence from basic and clinical research showing that IDO is a major regulatory enzyme involved in the maintenance of immunohomeostasis in the vascular wall, as well as current knowledge about promising targets for the development of new anti-atherosclerotic drugs.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Metabolismo Energético/imunologia , Sistema Imunitário/imunologia , Imunomodulação , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação/imunologia , Triptofano/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Artérias/efeitos dos fármacos , Artérias/enzimologia , Artérias/fisiopatologia , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , Aterosclerose/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/enzimologia , Sistema Imunitário/fisiopatologia , Imunomodulação/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/fisiopatologia , Placa Aterosclerótica , Transdução de Sinais , Triptofano/metabolismo , Regulação para Cima
14.
Cells ; 8(2)2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769840

RESUMO

Extracellular matrix (ECM) remodeling is required for many physiological and pathological processes. Metalloproteinases (MMPs) are endopeptidases which are able to degrade different components of the ECM and nucleus matrix and to cleave numerous non-ECM proteins. Among pathological processes, MMPs are involved in adipose tissue expansion, liver fibrosis, and atherosclerotic plaque development and vulnerability. The expression and the activity of these enzymes are regulated by different hormones and growth factors, such as insulin, leptin, and adiponectin. The controversial results reported up to this moment regarding MMPs behavior in ECM biology could be consequence of the different expression patterns among species and the stage of the studied pathology. The aim of the present review was to update the knowledge of the role of MMPs and its inhibitors in ECM remodeling in high incidence pathologies such as obesity, liver fibrosis, and cardiovascular disease.


Assuntos
Tecido Adiposo/enzimologia , Artérias/enzimologia , Matriz Extracelular/metabolismo , Fígado/enzimologia , Metaloproteinases da Matriz/metabolismo , Animais , Ativação Enzimática , Humanos
15.
Exp Gerontol ; 116: 7-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472277

RESUMO

It is not known whether aging alters the enzymatic reactive aldehyde- and lipid hydroperoxide-detoxifying capacity of the human arterial tissue favoring vascular oxidative stress. To address this issue, we studied the specific enzymatic activities of class 1, 2 and 3 aldehyde dehydrogenase (ALDH1, ALDH2 and ALDH3), glutathione S­transferase (isozyme A4-4, GSTA4-4) and aldose reductase (AR), namely the major reactive aldehyde-scavenging enzymes, together with the activity of the lipid hydroperoxide-removing enzyme glutathione peroxidase (GSH-Px), in superior thyroid arteries (STA) specimens obtained in the thyroid surgery setting in aged subjects (age 72.3 ±â€¯3.6 years) and young adult controls (age 31.9 ±â€¯3.5 years). Vascular lipid peroxidation was also studied by assessing in STA fluorescent damage products of lipid peroxidation (FDPL), which reflect oxidant-induced 4­hydroxynonenal and lipid hydroperoxide formation. Remarkably, the activities of ALDH1, ALDH2, ALDH3, GSTA4-4, AR and GSH-Px were significantly lower, and FDPL levels higher, in the arterial tissue of the aged subjects than in that of the young adult controls. Moreover, the enzymatic activities were inversely and significantly correlated with the levels of FDPL in the arterial tissue of both the aged and young subjects, highlighting their vascular antioxidant/antilipoperoxidative role in vivo. Thus, aging impairs the enzymatic reactive aldehyde-detoxifying capacity and GSH-Px activity of the human arterial tissue eventually favoring vascular oxidative stress.


Assuntos
Envelhecimento/metabolismo , Aldeído Desidrogenase/metabolismo , Artérias/enzimologia , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeído Redutase/metabolismo , Estudos de Casos e Controles , Feminino , Glutationa Transferase/metabolismo , Humanos , Masculino , Estresse Oxidativo
16.
Curr Vasc Pharmacol ; 17(2): 141-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29189170

RESUMO

Paraoxonase-1 (PON-1) is a calcium-dependent enzyme that is synthesized in the liver and then secreted in blood where it is bound to high density lipoprotein (HDL). PON-1 is a hydrolase with a wide range of substrates, including lipid peroxides. It is considered responsible for many of the antiatherogenic properties of HDL. PON-1 prevents low density lipoprotein (LDL) oxidation, a process that is considered to contribute to the initiation and development of atherosclerosis. PON-1 activity and levels are influenced by gene polymorphisms; of the 2 common variants, one is in position 192 (Q192R) and one in position 55 (M55L). Also, many drugs affect PON-1 activity. The role of PON-1 in carotid atherosclerosis is inconsistent. Some studies show an association of PON-1 polymorphisms with carotid plaque formation, whereas others do not. The aim of this review is to summarize the characteristics of PON-1, its interactions with drugs and its role in atherosclerosis and especially its relationship with carotid artery disease.


Assuntos
Artérias/enzimologia , Arildialquilfosfatase/metabolismo , Aterosclerose/enzimologia , Doenças das Artérias Carótidas/enzimologia , Placa Aterosclerótica , Artérias/patologia , Arildialquilfosfatase/genética , Aterosclerose/epidemiologia , Aterosclerose/genética , Aterosclerose/patologia , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Progressão da Doença , Humanos , Polimorfismo Genético , Prognóstico , Medição de Risco , Fatores de Risco , Transdução de Sinais
17.
Arterioscler Thromb Vasc Biol ; 38(10): 2474-2483, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354211

RESUMO

Objective- Arginase can reduce NO availability. In this study, we explored arginase as a determinant of endothelial dysfunction in small arteries from obese patients and its relationship with aging and microvascular remodeling. Approach and Results- Small arteries were dissected after subcutaneous fat biopsies and evaluated on a pressurized micromyograph. Endothelium-dependent vasodilation was assessed by acetylcholine, repeated under L-NAME ( N G-nitro-L-arginine-methyl ester), N(ω)-hydroxy-nor-l-arginine (arginase inhibitor) and gp91ds-tat (NADPH [nicotinamide adenine dinucleotide phosphate oxidase] oxidase inhibitor) in vessels from young (age <30 years) control and obese and old (>30 years) control and obese subjects. Media-lumen ratio and amount of vascular wall fibrosis were used as markers of vascular remodeling. Amount of vascular superoxide anions and NO production were determined with immunofluorescence, whereas arginase expression was quantified using Western blot and quantitative polymerase chain reaction. Obese and older age groups had lower vascular NO, as well as higher media-lumen ratio, wall fibrosis, intravascular superoxide, and blunted inhibitory effect of L-NAME on acetylcholine versus controls and younger age groups. N(ω)-hydroxy-nor-l-arginine restored the acetylcholine-induced vasodilation in young and, to a lesser extent, in old obese subjects. This effect was abolished by addition of L-NAME. Gp91ds-tat increased the vasodilatory response to N(ω)-hydroxy-nor-l-arginine in old obese. Superoxide anions and arginase I/II levels were higher in the vascular wall of obese versus controls. Conclusions- Arginase contributes to microvascular endothelial dysfunction in obesity. Its impact is reduced by aging because of higher levels of vascular oxidative stress. Obesity is accompanied by accelerated microvascular remodeling, the extent of which is related to the amount of arginase in the vascular wall.


Assuntos
Envelhecimento/metabolismo , Arginase/metabolismo , Artérias/enzimologia , Óxido Nítrico/metabolismo , Obesidade/enzimologia , Gordura Subcutânea/irrigação sanguínea , Vasodilatação , Adulto , Fatores Etários , Arginase/antagonistas & inibidores , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Estudos de Casos e Controles , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Obesidade/diagnóstico , Obesidade/fisiopatologia , Estresse Oxidativo , Transdução de Sinais , Superóxidos/metabolismo , Remodelação Vascular , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Adulto Jovem
18.
Eur Rev Med Pharmacol Sci ; 22(17): 5659-5664, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30229843

RESUMO

OBJECTIVE: This study aims to investigate the regulatory role of p38 mitogen-activated protein kinase (p38MAPK) in rats with lower-extremity arterial ischemia-reperfusion injury. MATERIALS AND METHODS: A total of 60 Sprague-Dawley (SD) rats were randomly divided into four groups: control group (Group A), lower-extremity arterial ischemia-reperfusion group (Group B), lower-extremity arterial ischemic postconditioning group (Group C), and lower-extremity arterial ischemic postconditioning + SB203580 group (Group D, 5 µmol/L SB203580, the inhibitor of MAPK pathway, was injected after lower-extremity arterial ischemic postconditioning). The lower-extremity arterial vessels were collected after 24 h. The apoptosis in the lower-extremity arterial vessel in each group was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. The expression of phosphorylated (p)-p38MAPK was measured via Western blotting, and the level of p-activating transcription factor-2 (ATF-2) was detected via immunohistochemical method. RESULTS: The positive rate of apoptotic cells (%) in Group B was significantly increased compared to that in Group A (p<0.05). However, the positive rate was statistically decreased by postcondition in Group C, the rate was further reduced after injection of SB203580 in Group D compared to Group B (p<0.05). Compared with that in Group C, the expressions of p-p38MAPK and p-ATF-2 in Group D were significantly downregulated after injection of SB203580 (p<0.05). CONCLUSIONS: Lower-extremity arterial ischemia-reperfusion postconditioning can significantly reduce the apoptosis level in vascular tissues, decrease the expressions of p-p38MAPK and downstream factor ATF-2, and alleviate the damage in lower-extremity arterial vessels. The inhibition of MAPK pathway further restricted the apoptosis and contributed to a promoting role in the recovery of lower-extremity arterial ischemia-reperfusion injury.


Assuntos
Apoptose , Artérias/enzimologia , Membro Posterior/irrigação sanguínea , Pós-Condicionamento Isquêmico/métodos , Doença Arterial Periférica/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Modelos Animais de Doenças , Doença Arterial Periférica/enzimologia , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
Free Radic Biol Med ; 124: 525-531, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29964170

RESUMO

We studied the specific enzymatic activities of selenium-dependent (GSH-Px) and -independent (GST-Px) glutathione peroxidase, glutathione reductase (GSSG-Red), and glutathione S-transferase (GST) in internal mammary arteries (IMArt) specimens obtained during coronary artery bypass surgery in 18 patients with type 2 diabetes mellitus as compared to 18 non-diabetic controls; vascular lipid peroxidation, namely fluorescent damage products of lipid peroxidation (FDPL) as 4-hydroxynonenal-related oxidative stress indicators, was also studied. Moreover, in other 16 diabetic patients and 16 controls, total glutathione (TGlut) was determined in IMArt specimens specifically homogenized in sulfosalycilic acid to prevent vascular GSH depletion. The activities of GSH-Px, GSSG-Red, and GST were significantly lower, and FDPL levels higher, in the arterial tissue of diabetic patients than in that of controls; GST-Px was undetectable. Such enzymatic activities were inversely correlated with vascular lipid peroxidation, highlighting their antioxidant role in the arterial tissue, as were HbA1c and FDPL levels with the enzymatic activities, suggesting that glycation, oxidant species and lipoperoxidation aldehydes may be involved in glutathione-related enzyme inactivation. Further, in the diabetic patients HbA1c was correlated directly with lipid peroxidation but inversely with TGlut of the arterial tissue. In the patients considered for vascular enzymatic activities and FDPL assay, 3/4-vessel coronary artery disease (CAD) as expression of atherosclerosis severity was present in 9 diabetic patients and in 3 controls. Notably, vascular glutathione-related enzymatic activities were significantly lower, and FDPL levels higher, in the 9 diabetic patients with 3/4-vessel CAD than in the 9 without, as well as in the total of 12 patients with 3/4-vessel CAD than in the total of 24 patients without. Moreover, vascular TGlut content was significantly lower in the diabetic than in the control patients. Three/4-vessel CAD was present in 6 diabetic patients and in 2 controls considered for determination of vascular Tglut content, which was significantly lower in the diabetic patients with 3/4-vessel CAD than in those without, as well in the total of 8 patients with 3/4-vessel CAD than in the total of 24 patients without. Thus, weakened glutathione-related antioxidant capacity and oxidative stress of the arterial tissue are associated with the severity of atherosclerosis. In conclusion, impaired glutathione-related antioxidant defenses of the arterial tissue occur in diabetic patients, eventually favoring vascular oxidative stress and the severity of atherosclerosis.


Assuntos
Antioxidantes/análise , Artérias/enzimologia , Artérias/patologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Idoso , Antioxidantes/metabolismo , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Diabetes Mellitus Tipo 2/complicações , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/análise , Glutationa Peroxidase/metabolismo , Glutationa Redutase/análise , Glutationa Redutase/metabolismo , Glutationa Transferase/análise , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia
20.
Microvasc Res ; 119: 84-90, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29738719

RESUMO

Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca2+ related to activation of IP3 receptors and to Rho-kinase activity.


Assuntos
Artérias/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Endotelina-1/farmacologia , Cauda/irrigação sanguínea , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Artérias/enzimologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA