Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
Stud Health Technol Inform ; 316: 858-862, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176928

RESUMO

Electrocardiogram (ECG) is one of the reference cardiovascular diagnostic exams. However, the ECG signal is very prone to being distorted through different sources of artifacts that can later interfere with the diagnostic. For this reason, signal quality assessment (SQA) methods that identify corrupted signals are critical to improve the robustness of automatic ECG diagnostic methods. This work presents a review and open-source implementation of different available indices for SQA as well as introducing an index that considers the ECG as a dynamical system. These indices are then used to develop machine learning models which evaluate the quality of the signals. The proposed index along the designed ML models are shown to improve SQA for ECG signals.


Assuntos
Eletrocardiografia , Aprendizado de Máquina , Humanos , Processamento de Sinais Assistido por Computador , Artefatos , Algoritmos , Linguagens de Programação
2.
Sci Rep ; 14(1): 17847, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090284

RESUMO

The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The manual annotation of ground-truth for artifact detection methods is expensive and time-consuming. This work addresses the issue by proposing a method dedicated to augmenting whole slide images with artifacts. The tool seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The augmented datasets are then utilized to train artifact classification methods. The evaluation shows their usefulness in classification of the artifacts, where they show an improvement from 0.10 to 0.01 AUROC depending on the artifact type. The framework, model, weights, and ground-truth annotations are freely released to facilitate open science and reproducible research.


Assuntos
Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador , Controle de Qualidade , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39102322

RESUMO

Cochlear implant (CI) is a neural prosthesis that can restore hearing for patients with severe to profound hearing loss. Observed variability in auditory rehabilitation outcomes following cochlear implantation may be due to cerebral reorganization. Electroencephalography (EEG), favored for its CI compatibility and non-invasiveness, has become a staple in clinical objective assessments of cerebral plasticity post-implantation. However, the electrical activity of CI distorts neural responses, and EEG susceptibility to these artifacts presents significant challenges in obtaining reliable neural responses. Despite the use of various artifact removal techniques in previous studies, the automatic identification and reduction of CI artifacts while minimizing information loss or damage remains a pressing issue in objectively assessing advanced auditory functions in CI recipients. To address this problem, we propose an approach that combines machine learning algorithms-specifically, Support Vector Machines (SVM)-along with Independent Component Analysis (ICA) and Ensemble Empirical Mode Decomposition (EEMD) to automatically detect and minimize electrical artifacts in EEG data. The innovation of this research is the automatic detection of CI artifacts using the temporal properties of EEG signals. By applying EEMD and ICA, we can process and remove the identified CI artifacts from the affected EEG channels, yielding a refined signal. Comparative analysis in the temporal, frequency, and spatial domains suggests that the corrected EEG recordings of CI recipients closely align with those of peers with normal hearing, signifying the restoration of reliable neural responses across the entire scalp while eliminating CI artifacts.


Assuntos
Algoritmos , Artefatos , Implantes Cocleares , Eletroencefalografia , Máquina de Vetores de Suporte , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Idoso , Adulto Jovem
4.
EBioMedicine ; 106: 105259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106531

RESUMO

BACKGROUND: Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS: We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS: Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION: We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING: All authors have been working for F. Hoffmann-La Roche Ltd.


Assuntos
Biomarcadores , Encéfalo , Eletroencefalografia , Aprendizado de Máquina , Humanos , Eletroencefalografia/métodos , Encéfalo/metabolismo , Encéfalo/fisiologia , Masculino , Feminino , Adulto , Processamento de Sinais Assistido por Computador , Artefatos , Adolescente , Adulto Jovem , Algoritmos , Pessoa de Meia-Idade , Criança
5.
Physiol Meas ; 45(5)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150768

RESUMO

Objective.Cardiovascular diseases are a major cause of mortality globally, and electrocardiograms (ECGs) are crucial for diagnosing them. Traditionally, ECGs are stored in printed formats. However, these printouts, even when scanned, are incompatible with advanced ECG diagnosis software that require time-series data. Digitizing ECG images is vital for training machine learning models in ECG diagnosis, leveraging the extensive global archives collected over decades. Deep learning models for image processing are promising in this regard, although the lack of clinical ECG archives with reference time-series data is challenging. Data augmentation techniques using realistic generative data models provide a solution.Approach.We introduceECG-Image-Kit, an open-source toolbox for generating synthetic multi-lead ECG images with realistic artifacts from time-series data, aimed at automating the conversion of scanned ECG images to ECG data points. The tool synthesizes ECG images from real time-series data, applying distortions like text artifacts, wrinkles, and creases on a standard ECG paper background.Main results.As a case study, we used ECG-Image-Kit to create a dataset of 21 801 ECG images from the PhysioNet QT database. We developed and trained a combination of a traditional computer vision and deep neural network model on this dataset to convert synthetic images into time-series data for evaluation. We assessed digitization quality by calculating the signal-to-noise ratio and compared clinical parameters like QRS width, RR, and QT intervals recovered from this pipeline, with the ground truth extracted from ECG time-series. The results show that this deep learning pipeline accurately digitizes paper ECGs, maintaining clinical parameters, and highlights a generative approach to digitization.Significance.The toolbox has broad applications, including model development for ECG image digitization and classification. The toolbox currently supports data augmentation for the 2024 PhysioNet Challenge, focusing on digitizing and classifying paper ECG images.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Humanos , Processamento de Sinais Assistido por Computador , Artefatos , Software
6.
Gen Dent ; 72(5): 66-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39151085

RESUMO

The presence of facial jewelry and medical devices within a radiographic field of view may promote the formation of artifacts that challenge diagnostic interpretation. The objective of this article is to describe a previously unreported radiographic anomaly produced by an oral piercing site below the lower lip. This unusual artifact masqueraded as a severe resorptive defect, dental caries, or cervical abfraction and occurred following removal of an extremely large labret below the lower lip and subsequent acquisition of a radiographic image. The radiolucency was ultimately attributed to an extensive aperture below the lower lip created by a series of sequentially larger soft tissue expanders. Clinicians should seek correlation of atypical radiographic presentations with soft tissue defects secondary to injury or intentional oral piercing.


Assuntos
Artefatos , Piercing Corporal , Lábio , Humanos , Lábio/lesões , Lábio/diagnóstico por imagem , Lábio/cirurgia , Piercing Corporal/efeitos adversos , Feminino , Radiografia Dentária , Mucosa Bucal/diagnóstico por imagem , Adulto
7.
J Int Adv Otol ; 20(4): 306-311, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39161162

RESUMO

In cochlear implant recipients, the diagnostic value of magnetic resonance imaging (MRI) scans is reduced by image artifacts. The static magnetic field of a 3.0T scanner is associated with the risk of implant demagnetization. The development of rotatable implant magnets aimed to support the advancement of 3.0T MRI scanners and eliminate the risk of demagnetization of cochlear implant magnets. This study aimed to compare the image artifacts caused by first-t and second-generation rotatable cochlear implant magnets in 3.0T MRI. Three Tesla MRI T2W TSE sequences were performed on 3 subjects with first- and second-generation rotatable cochlear implant magnets. The cochlear implant was fixed to the head at the implantation position by a swim cap. The size of the image artifact was determined in the transverse plane. Intraindividual comparative analyses showed that within the margin of combined uncertainty of 5 mm at a resolution of 2 mm, the cochlear implant-induced image artifacts in all subjects showed for both (first- and second-generation rotatable cochlear implant magnets), the same maximum image artifact dimension of 125 mm. We could show that no difference in image artifact size was detected within the margin of error determined by resolution, localized induced shift of the scan, and reproducibility of the tilt angle of the head relative to the chest in a living subject. Assumed improved magnet attachment can be reached without compromising of the magnet artifact size.


Assuntos
Artefatos , Implantes Cocleares , Imageamento por Ressonância Magnética , Imãs , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Feminino , Masculino , Implante Coclear/métodos
8.
J Magn Reson ; 365: 107741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39089222

RESUMO

Lung diseases are almost invariably heterogeneous and progressive, making it imperative to capture temporally and spatially explicit information to understand the disease initiation and progression. Imaging the lung with MRI-particularly in the preclinical setting-has historically been challenging because of relatively low lung tissue density, rapid cardiac and respiratory motion, and rapid transverse (T2*) relaxation. These limitations can largely be mitigated using ultrashort-echo-time (UTE) sequences, which are intrinsically robust to motion and avoid significant T2* decay. A significant disadvantage of common radial UTE sequences is that they require inefficient, center-out k-space sampling, resulting in long acquisition times relative to conventional Cartesian sequences. Therefore, pulmonary images acquired with radial UTE are often undersampled to reduce acquisition time. However, undersampling reduces image SNR, introduces image artifacts, and degrades true image resolution. The level of undersampling is further increased if offline gating techniques like retrospective gating are employed, because only a portion (∼40-50%) of the data is used in the final image reconstruction. Here, we explore the impact of undersampling on SNR and T2* mapping in mouse lung imaging using simulation and in-vivo data. Increased scatter in both metrics was noticeable at around 50% sampling. Parenchymal apparent SNR only decreased slightly (average decrease âˆ¼ 1.4) with as little as 10% sampling. Apparent T2* remained similar across undersampling levels, but it became significantly increased (p < 0.05) below 80% sampling. These trends suggest that undersampling can generate quantifiable, but moderate changes in the apparent value of T2*. Moreover, these approaches to assess the impact of undersampling are straightforward to implement and can readily be expanded to assess the quantitative impact of other MR acquisition and reconstruction parameters.


Assuntos
Algoritmos , Pulmão , Imageamento por Ressonância Magnética , Animais , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Imageamento Tridimensional/métodos , Artefatos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Camundongos Endogâmicos C57BL
9.
BMC Med Imaging ; 24(1): 204, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107679

RESUMO

BACKGROUND: Computed tomography (CT) is widely in clinics and is affected by metal implants. Metal segmentation is crucial for metal artifact correction, and the common threshold method often fails to accurately segment metals. PURPOSE: This study aims to segment metal implants in CT images using a diffusion model and further validate it with clinical artifact images and phantom images of known size. METHODS: A retrospective study was conducted on 100 patients who received radiation therapy without metal artifacts, and simulated artifact data were generated using publicly available mask data. The study utilized 11,280 slices for training and verification, and 2,820 slices for testing. Metal mask segmentation was performed using DiffSeg, a diffusion model incorporating conditional dynamic coding and a global frequency parser (GFParser). Conditional dynamic coding fuses the current segmentation mask and prior images at multiple scales, while GFParser helps eliminate high-frequency noise in the mask. Clinical artifact images and phantom images are also used for model validation. RESULTS: Compared with the ground truth, the accuracy of DiffSeg for metal segmentation of simulated data was 97.89% and that of DSC was 95.45%. The mask shape obtained by threshold segmentation covered the ground truth and DSCs were 82.92% and 84.19% for threshold segmentation based on 2500 HU and 3000 HU. Evaluation metrics and visualization results show that DiffSeg performs better than other classical deep learning networks, especially for clinical CT, artifact data, and phantom data. CONCLUSION: DiffSeg efficiently and robustly segments metal masks in artifact data with conditional dynamic coding and GFParser. Future work will involve embedding the metal segmentation model in metal artifact reduction to improve the reduction effect.


Assuntos
Artefatos , Metais , Imagens de Fantasmas , Próteses e Implantes , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Algoritmos
10.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123963

RESUMO

Determining visual attention during cognitive tasks using activation MRI remains challenging. This study aimed to develop a new eye-tracking (ET) post-processing platform to enhance data accuracy, validate the feasibility of subsequent ET-fMRI applications, and provide tool support. Sixteen volunteers aged 18 to 20 were exposed to a visual temporal paradigm with changing images of objects and faces in various locations while their eye movements were recorded using an MRI-compatible ET system. The results indicate that the accuracy of the data significantly improved after post-processing. Participants generally maintained their visual attention on the screen, with mean gaze positions ranging from 89.1% to 99.9%. In cognitive tasks, the gaze positions showed adherence to instructions, with means ranging from 46.2% to 50%. Temporal consistency assessments indicated prolonged visual tasks can lead to decreased attention during certain tasks. The proposed methodology effectively identified and quantified visual artifacts and losses, providing a precise measure of visual attention. This study offers a robust framework for future work integrating filtered eye-tracking data with fMRI analyses, supporting cognitive neuroscience research.


Assuntos
Artefatos , Atenção , Cognição , Movimentos Oculares , Tecnologia de Rastreamento Ocular , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Atenção/fisiologia , Masculino , Feminino , Adulto Jovem , Movimentos Oculares/fisiologia , Adolescente , Cognição/fisiologia , Adulto
11.
J Biomed Opt ; 29(8): 086502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086928

RESUMO

Significance: Lattice light-sheet structured illumination microscopy (latticeSIM) has proven highly effective in producing three-dimensional images with super resolution rapidly and with minimal photobleaching. However, due to the use of two separate objectives, sample-induced aberrations can result in an offset between the planes of excitation and detection, causing artifacts in the reconstructed images. Aim: We introduce a posterior approach to detect and correct the axial offset between the excitation and detection focal planes in latticeSIM and provide a method to minimize artifacts in the reconstructed images. Approach: We utilized the residual phase information within the overlap regions of the laterally shifted structured illumination microscopy information components in frequency space to retrieve the axial offset between the excitation and the detection focal planes in latticeSIM. Results: We validated our technique through simulations and experiments, encompassing a range of samples from fluorescent beads to subcellular structures of adherent cells. We also show that using transfer functions with the same axial offset as the one present during data acquisition results in reconstructed images with minimal artifacts and salvages otherwise unusable data. Conclusion: We envision that our method will be a valuable addition to restore image quality in latticeSIM datasets even for those acquired under non-ideal experimental conditions.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Animais , Simulação por Computador
12.
IEEE Trans Med Imaging ; 43(8): 3013-3026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088484

RESUMO

Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance Imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.


Assuntos
Aprendizado Profundo , Coração , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Coração/diagnóstico por imagem , Algoritmos , Artefatos , Movimento/fisiologia , Tórax/diagnóstico por imagem , Adulto
13.
Sci Rep ; 14(1): 15010, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951163

RESUMO

Diffusion tensor imaging (DTI) metrics and tractography can be biased due to low signal-to-noise ratio (SNR) and systematic errors resulting from image artifacts and imperfections in magnetic field gradients. The imperfections include non-uniformity and nonlinearity, effects caused by eddy currents, and the influence of background and imaging gradients. We investigated the impact of systematic errors on DTI metrics of an isotropic phantom and DTI metrics and tractography of a rat brain measured at high resolution. We tested denoising and Gibbs ringing removal methods combined with the B matrix spatial distribution (BSD) method for magnetic field gradient calibration. The results showed that the performance of the BSD method depends on whether Gibbs ringing is removed and the effectiveness of stochastic error removal. Region of interest (ROI)-based analysis of the DTI metrics showed that, depending on the size of the ROI and its location in space, correction methods can remove systematic bias to varying degrees. The preprocessing pipeline proposed and dedicated to this type of data together with the BSD method resulted in an even - 90% decrease in fractional anisotropy (FA) (globally and locally) in the isotropic phantom and - 45% in the rat brain. The largest global changes in the rat brain tractogram compared to the standard method without preprocessing (sDTI) were noticed after denoising. The direction of the first eigenvector obtained from DTI after denoising, Gibbs ringing removal and BSD differed by an average of 56 and 10 degrees in the ROI from sDTI and from sDTI after denoising and Gibbs ringing removal, respectively. The latter can be identified with the amount of improvement in tractography due to the elimination of systematic errors related to imperfect magnetic field gradients. Based on the results, the systematic bias for high resolution data mainly depended on SNR, but the influence of non-uniform gradients could also be seen. After denoising, the BSD method was able to further correct both the metrics and tractography of the diffusion tensor in the rat brain by taking into account the actual distribution of magnetic field gradients independent of the examined object and uniquely dependent on the scanner and sequence. This means that in vivo studies are also subject to this type of errors, which should be taken into account when processing such data.


Assuntos
Artefatos , Encéfalo , Imagem de Tensor de Difusão , Imagens de Fantasmas , Razão Sinal-Ruído , Animais , Imagem de Tensor de Difusão/métodos , Ratos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Masculino
14.
PLoS One ; 19(7): e0305902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024373

RESUMO

Eye movement during blinking can be a significant artifact in Event-Related Potentials (ERP) analysis. Blinks produce a positive potential in the vertical electrooculogram (VEOG), spreading towards the posterior direction. Two methods are frequently used to suppress VEOGs: linear regression to subtract the VEOG signal from the electroencephalogram (EEG) and Independent Component Analysis (ICA). However, some information is lost in both. The present algorithm (1) statistically identifies the position of VEOGs in the frontopolar channels; (2) performs EEG averaging for each channel, which results in 'blink templates'; (3) subtracts each template from the respective EEG at each VEOG position, only when the linear correlation index between the template and the segment is greater than a chosen threshold L. The signals from twenty subjects were acquired using a behavioral test and were treated using FilterBlink for subsequent ERP analysis. A model was designed to test the method for each subject using twenty copies of the EEG signal from the subject's mid-central channel (with nearly no VEOG) representing the EEG channels and their respective blink templates. At the same 200 equidistant time points (marks), a signal (2.5 sinusoidal cycles at 1050 ms emulating an ERP) was mixed with each model channel and the respective blink template of that channel, between 500 to 1200 ms after each mark. According to the model, VEOGs interfered with both ERPs and the ongoing EEG, mainly on the anterior medial leads, and no significant effect was observed on the mid-central channel (Cz). FilterBlink recovered approximately 90% (Fp1) to 98% (Fz) of the original ERP and EEG signals for L = 0.1. The method reduced the VEOG effect on the EEG after ERP and blink-artifact averaging in analyzing real signals. The method is straightforward and effective for VEOG attenuation without significant distortion in the EEG signal and embedded ERPs.


Assuntos
Algoritmos , Artefatos , Piscadela , Eletroencefalografia , Eletroculografia , Humanos , Eletroencefalografia/métodos , Eletroculografia/métodos , Piscadela/fisiologia , Masculino , Feminino , Adulto , Processamento de Sinais Assistido por Computador , Potenciais Evocados/fisiologia , Adulto Jovem , Movimentos Oculares/fisiologia
15.
PLoS One ; 19(7): e0301919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968191

RESUMO

INTRODUCTION: Brain positron emission tomography/computed tomography (PET/CT) scans are useful for identifying the cause of dementia by evaluating glucose metabolism in the brain with F-18-fluorodeoxyglucose or Aß deposition with F-18-florbetaben. However, since imaging time ranges from 10 to 30 minutes, movements during the examination might result in image artifacts, which interfere with diagnosis. To solve this problem, data-driven brain motion correction (DDBMC) techniques are capable of performing motion corrected reconstruction using highly accurate motion estimates with high temporal resolution. In this study, we investigated the effectiveness of DDBMC techniques on PET/CT images using a Hoffman phantom, involving continuous rotational and tilting motion, each expanded up to approximately 20 degrees. MATERIALS AND METHODS: Listmode imaging was performed using a Hoffman phantom that reproduced rotational and tilting motions of the head. Brain motion correction processing was performed on the obtained data. Reconstructed images with and without brain motion correction processing were compared. Visual evaluations by a nuclear medicine specialist and quantitative parameters of images with correction and reference still images were compared. RESULTS: Normalized Mean Squared Error (NMSE) results demonstrated the effectiveness of DDBMC in compensating for rotational and tilting motions during PET imaging. In Cases 1 and 2 involving rotational motion, NMSE decreased from 0.15-0.2 to approximately 0.01 with DDBMC, indicating a substantial reduction in differences from the reference image across various brain regions. In the Structural Similarity Index (SSIM), DDBMC improved it to above 0.96 Contrast assessment revealed notable improvements with DDBMC. In continuous rotational motion, % contrast increased from 42.4% to 73.5%, In tilting motion, % contrast increased from 52.3% to 64.5%, eliminating significant differences from the static reference image. These findings underscore the efficacy of DDBMC in enhancing image contrast and minimizing motion induced variations across different motion scenarios. CONCLUSIONS: DDBMC processing can effectively compensate for continuous rotational and tilting motion of the head during PET, with motion angles of approximately 20 degrees. However, a significant limitation of this study is the exclusive validation of the proposed method using a Hoffman phantom; its applicability to the human brain has not been investigated. Further research involving human subjects is necessary to assess the generalizability and reliability of the presented motion correction technique in real clinical scenarios.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Tomografia por Emissão de Pósitrons/métodos , Movimento (Física) , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18
16.
BMC Med Imaging ; 24(1): 162, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956470

RESUMO

BACKGROUND: The image quality of computed tomography angiography (CTA) images following endovascular aneurysm repair (EVAR) is not satisfactory, since artifacts resulting from metallic implants obstruct the clear depiction of stent and isolation lumens, and also adjacent soft tissues. However, current techniques to reduce these artifacts still need further advancements due to higher radiation doses, longer processing times and so on. Thus, the aim of this study is to assess the impact of utilizing Single-Energy Metal Artifact Reduction (SEMAR) alongside a novel deep learning image reconstruction technique, known as the Advanced Intelligent Clear-IQ Engine (AiCE), on image quality of CTA follow-ups conducted after EVAR. MATERIALS: This retrospective study included 47 patients (mean age ± standard deviation: 68.6 ± 7.8 years; 37 males) who underwent CTA examinations following EVAR. Images were reconstructed using four different methods: hybrid iterative reconstruction (HIR), AiCE, the combination of HIR and SEMAR (HIR + SEMAR), and the combination of AiCE and SEMAR (AiCE + SEMAR). Two radiologists, blinded to the reconstruction techniques, independently evaluated the images. Quantitative assessments included measurements of image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the longest length of artifacts (AL), and artifact index (AI). These parameters were subsequently compared across different reconstruction methods. RESULTS: The subjective results indicated that AiCE + SEMAR performed the best in terms of image quality. The mean image noise intensity was significantly lower in the AiCE + SEMAR group (25.35 ± 6.51 HU) than in the HIR (47.77 ± 8.76 HU), AiCE (42.93 ± 10.61 HU), and HIR + SEMAR (30.34 ± 4.87 HU) groups (p < 0.001). Additionally, AiCE + SEMAR exhibited the highest SNRs and CNRs, as well as the lowest AIs and ALs. Importantly, endoleaks and thrombi were most clearly visualized using AiCE + SEMAR. CONCLUSIONS: In comparison to other reconstruction methods, the combination of AiCE + SEMAR demonstrates superior image quality, thereby enhancing the detection capabilities and diagnostic confidence of potential complications such as early minor endleaks and thrombi following EVAR. This improvement in image quality could lead to more accurate diagnoses and better patient outcomes.


Assuntos
Artefatos , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares , Humanos , Estudos Retrospectivos , Feminino , Angiografia por Tomografia Computadorizada/métodos , Idoso , Masculino , Procedimentos Endovasculares/métodos , Pessoa de Meia-Idade , Aneurisma da Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Stents , Correção Endovascular de Aneurisma
17.
Phys Med Biol ; 69(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959913

RESUMO

Objective. Follow-up computed tomography angiography (CTA) is necessary for ensuring occlusion effect of endovascular coiling. However, the implanted metal coil will introduce artifacts that have a negative spillover into radiologic assessment.Method. A framework named ReMAR is proposed in this paper for metal artifacts reduction (MARs) from follow-up CTA of patients with coiled aneurysms. It employs preoperative CTA to provide the prior knowledge of the aneurysm and the expected position of the coil as a guidance thus balances the metal artifacts removal performance and clinical feasibility. The ReMAR is composed of three modules: segmentation, registration and MAR module. The segmentation and registration modules obtain the metal coil knowledge via implementing aneurysms delineation on preoperative CTA and alignment of follow-up CTA. The MAR module consisting of hybrid convolutional neural network- and transformer- architectures is utilized to restore sinogram and remove the artifact from reconstructed image. Both image quality and vessel rendering effect after metal artifacts removal are assessed in order to responding clinical concerns.Main results. A total of 137 patients undergone endovascular coiling have been enrolled in the study: 13 of them have complete diagnosis/follow-up records for end-to-end validation, while the rest lacked of follow-up records are used for model training. Quantitative metrics show ReMAR significantly reduced the metal-artifact burden in follow-up CTA. Qualitative ranks show ReMAR could preserve the morphology of blood vessels during artifact removal as desired by doctors.Significance. The ReMAR could significantly remove the artifacts caused by implanted metal coil in the follow-up CTA. It can be used to enhance the overall image quality and convince CTA an alternative to invasive follow-up in treated intracranial aneurysm.


Assuntos
Artefatos , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares , Metais , Humanos , Procedimentos Endovasculares/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Seguimentos , Feminino
18.
J Biomed Opt ; 29(7): 076502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39006313

RESUMO

Significance: In in-line digital holographic microscopy (DHM), twin-image artifacts pose a significant challenge, and reduction or complete elimination is essential for object reconstruction. Aim: To facilitate object reconstruction using a single hologram, significantly reduce inaccuracies, and avoid iterative processing, a digital holographic reconstruction algorithm called phase-support constraint on phase-only function (PCOF) is presented. Approach: In-line DHM simulations and tabletop experiments employing the sliding-window approach are used to compute the arithmetic mean and variance of the phase values in the reconstructed image. A support constraint mask, through variance thresholding, effectively enabled twin-image artifacts. Results: Quantitative evaluations using metrics such as mean squared error, peak signal-to-noise ratio, and mean structural similarity index show PCOF's superior capability in eliminating twin-image artifacts and achieving high-fidelity reconstructions compared with conventional methods such as angular spectrum and iterative phase retrieval methods. Conclusions: PCOF stands as a promising approach to in-line digital holographic reconstruction, offering a robust solution to mitigate twin-image artifacts and enhance the fidelity of reconstructed objects.


Assuntos
Algoritmos , Artefatos , Holografia , Processamento de Imagem Assistida por Computador , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Microscopia/métodos
19.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000548

RESUMO

Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.


Assuntos
Tomografia com Microscopia Eletrônica , Marcadores Fiduciais , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Algoritmos
20.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959873

RESUMO

Objective. Recent innovative neurostimulators allow recording local field potentials (LFPs) while performing motor tasks monitored by wearable sensors. Inertial sensors can provide quantitative measures of motor impairment in people with subthalamic nucleus deep brain stimulation. To the best of our knowledge, there is no validated method to synchronize inertial sensors and neurostimulators without an additional device. This study aims to define a new synchronization method to analyze disease-related brain activity patterns during specific motor tasks and evaluate how LFPs are affected by stimulation and medication.Approach. Fourteen male subjects treated with subthalamic nucleus deep brain stimulation were recruited to perform motor tasks in four different medication and stimulation conditions. In each condition, a synchronization protocol was performed consisting of taps on the implanted neurostimulator, which produces artifacts in the LFPs that a nearby inertial sensor can simultaneously record.Main results. In 64% of the recruited subjects, induced artifacts were detected at least in one condition. Among those subjects, 83% of the recordings could be synchronized offline analyzing LFPs and wearables data. The remaining recordings were synchronized by video analysis.Significance. The proposed synchronization method does not require an external system (e.g., TENS electrodes) and can be easily integrated into clinical practice. The procedure is simple and can be carried out in a short time. A proper and simple synchronization will also be useful to analyze subthalamic neural activity in the presence of specific events (e.g., freezing of gait events) to identify predictive biomarkers.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/instrumentação , Masculino , Pessoa de Meia-Idade , Artefatos , Processamento de Sinais Assistido por Computador , Adulto , Dispositivos Eletrônicos Vestíveis , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Encéfalo , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA