Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.847
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 293, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773551

RESUMO

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.


Assuntos
Apoptose , Artesunato , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Artesunato/farmacologia , Artesunato/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Animais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Camundongos , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos Nus , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Dano ao DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia
2.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716192

RESUMO

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Nigéria , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Masculino , Proteínas dos Microfilamentos/genética , Feminino , Combinação de Medicamentos , Repetições de Microssatélites/genética , Genótipo , Análise de Sequência de DNA , Recidiva , Polimorfismo Genético , Adulto
3.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724832

RESUMO

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Assuntos
Artemisininas , Neoplasias Encefálicas , Glioblastoma , Glutamina , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Glutamina/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Microambiente Tumoral , Apoptose , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Movimento Celular , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
4.
Malar J ; 23(1): 138, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720269

RESUMO

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mianmar , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Humanos , Estudos Transversais , Feminino , Masculino , Adolescente , Adulto , Administração Massiva de Medicamentos , Adulto Jovem , Mutação , Criança , Pré-Escolar , Pessoa de Meia-Idade , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Erradicação de Doenças/estatística & dados numéricos , Piperazinas
5.
PLoS One ; 19(5): e0299517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713730

RESUMO

Artemisinin-based combination therapies (ACTs) represent one of the mainstays of malaria control. Despite evidence of the risk of ACTs resistant infections in resource-limited countries, studies on the rational use of ACTs to inform interventions and prevent their emergence and/or spread are limited. The aim of this study was designed to analyze practices toward ACTs use for treating the treatment of uncomplicated malaria (UM) in an urban community. Between November 2015 and April 2016, a cross-sectional and prospective study was conducted in the 6 health facilities and all pharmacies in the Douala 5e subdivision, Cameroon. Anonymous interviews including both open- and closed-ended questions were conducted with selected participants among drug prescribers, patients attending the health facilities, and customers visiting the pharmacies. Data analysis was performed using StataSE11 software (version 11 SE). A total of 41 prescribers were included in the study. All were aware of national treatment guidelines, but 37.7% reported not waiting for test results before prescribing an antimalarial drug, and the main reason being stock-outs at health facilities. Likewise, artemether+lumefantrine/AL (81%) and dihydroartemisinin+piperaquine (63.5%) were the most commonly used first- and second-line drugs respectively. Biological tests were requested in 99.2% (128/129) of patients in health facilities, 60.0% (74) were performed and 6.2% were rationally managed. Overall 266 (35%) of 760 customers purchased antimalarial drugs, of these, 261 (98.1%) agreed to participate and of these, 69.4% purchased antimalarial drugs without a prescription. ACTs accounted for 90.0% of antimalarials purchased from pharmacies, of which AL was the most commonly prescribed antimalarial drug (67.1%), and only 19.5% of patients were appropriately dispensed. The current data suggest a gap between the knowledge and practices of prescribers as well as patients and customers misconceptions regarding the use of ACTs in Douala 5e subdivision. Despite government efforts to increase public awareness regarding the use of ACTs as first-line treatment for UM, our findings point out a critical need for the development, implementation and scaling-up of control strategies and continuing health education for better use of ACTs (prescription and dispensing) in Cameroon.


Assuntos
Antimaláricos , Artemisininas , Instalações de Saúde , Malária , Farmácias , Humanos , Artemisininas/uso terapêutico , Camarões , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Estudos Transversais , Feminino , Masculino , Adulto , Estudos Prospectivos , Quimioterapia Combinada , Pessoa de Meia-Idade , Adulto Jovem , Adolescente
6.
Nat Commun ; 15(1): 3817, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714692

RESUMO

Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Plasmodium falciparum , Humanos , Combinação Arteméter e Lumefantrina/uso terapêutico , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pré-Escolar , Criança , Masculino , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Feminino , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , RNA Ribossômico 18S/genética , Malária/tratamento farmacológico , Malária/parasitologia , Lactente , Infecções por HIV/tratamento farmacológico , Artemisininas/uso terapêutico , Artemisininas/administração & dosagem
7.
Malar J ; 23(1): 146, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750517

RESUMO

BACKGROUND: In 2020, during the COVID-19 pandemic, Médecins Sans Frontières (MSF) initiated three cycles of dihydroartemisin-piperaquine (DHA-PQ) mass drug administration (MDA) for children aged three months to 15 years within Bossangoa sub-prefecture, Central African Republic. Coverage, clinical impact, and community members perspectives were evaluated to inform the use of MDAs in humanitarian emergencies. METHODS: A household survey was undertaken after the MDA focusing on participation, recent illness among eligible children, and household satisfaction. Using routine surveillance data, the reduction during the MDA period compared to the same period of preceding two years in consultations, malaria diagnoses, malaria rapid diagnostic test (RDT) positivity in three MSF community healthcare facilities (HFs), and the reduction in severe malaria admissions at the regional hospital were estimated. Twenty-seven focus groups discussions (FGDs) with community members were conducted. RESULTS: Overall coverage based on the MDA card or verbal report was 94.3% (95% confidence interval (CI): 86.3-97.8%). Among participants of the household survey, 2.6% (95% CI 1.6-40.3%) of round 3 MDA participants experienced illness in the preceding four weeks compared to 30.6% (95% CI 22.1-40.8%) of MDA non-participants. One community HF experienced a 54.5% (95% CI 50.8-57.9) reduction in consultations, a 73.7% (95% CI 70.5-76.5) reduction in malaria diagnoses, and 42.9% (95% CI 36.0-49.0) reduction in the proportion of positive RDTs among children under five. A second community HF experienced an increase in consultations (+ 15.1% (- 23.3 to 7.5)) and stable malaria diagnoses (4.2% (3.9-11.6)). A third community HF experienced an increase in consultations (+ 41.1% (95% CI 51.2-31.8) and malaria diagnoses (+ 37.3% (95% CI 47.4-27.9)). There were a 25.2% (95% CI 2.0-42.8) reduction in hospital admissions with severe malaria among children under five from the MDA area. FGDs revealed community members perceived less illness among children because of the MDA, as well as fewer hospitalizations. Other indirect benefits such as reduced household expenditure on healthcare were also described. CONCLUSION: The MDA achieved high coverage and community acceptance. While some positive health impact was observed, it was resource intensive, particularly in this rural context. The priority for malaria control in humanitarian contexts should remain diagnosis and treatment. MDA may be additional tool where the context supports its implementation.


Assuntos
Antimaláricos , Artemisininas , COVID-19 , Malária , Administração Massiva de Medicamentos , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Pré-Escolar , Lactente , Criança , Adolescente , COVID-19/epidemiologia , República Centro-Africana/epidemiologia , Artemisininas/uso terapêutico , Artemisininas/administração & dosagem , Administração Massiva de Medicamentos/estatística & dados numéricos , Feminino , Masculino , Malária/tratamento farmacológico , SARS-CoV-2 , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico
8.
Parasitol Res ; 123(5): 209, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740597

RESUMO

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Assuntos
Antimaláricos , Artemisininas , Polimorfismo Genético , Artemisininas/uso terapêutico , Humanos , Antimaláricos/uso terapêutico , Prevalência , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Proteínas de Protozoários/genética , Sudeste Asiático/epidemiologia
9.
Malar J ; 23(1): 140, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725027

RESUMO

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Assuntos
Antimaláricos , Glucosefosfato Desidrogenase , Malária Vivax , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/uso terapêutico , Guiana Francesa/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Cinética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Estudos Retrospectivos , Idoso de 80 Anos ou mais
10.
Malar J ; 23(1): 128, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689257

RESUMO

BACKGROUND: Malaria treatment in sub-Saharan Africa is faced with challenges including unreliable supply of efficacious agents, substandard medicines coupled with high price of artemisinin-based combinations. This affects access to effective treatment increasing risk of malaria parasite resistance development and adverse drug events. This study investigated access to quality-assured artemisinin-based combination therapy (QAACT) medicines among clients of selected private drug-outlets in Uganda. METHODS: This was a cross sectional study where exit interviews were conducted among clients of private drug outlets in low and high malaria transmission settings in Uganda. This study adapted the World Health Organization/Health Action International (WHO/HAI) standardized criteria. Data was collected using a validated questionnaire. Data entry screen with checks was created in Epi-data ver 4.2 software and data entered in duplicate. Data was transferred to STATA ver 14.0 and cleaned prior to analysis. The analysis was done at 95% level of significance. RESULTS: A total of 1114 exit interviews were conducted among systematically sampled drug outlet clients. Over half, 54.9% (611/1114) of the participants were males. Majority, 97.2% (1083/1114) purchased an artemisinin-based combination anti-malarial. Most, 55.5% (618/1114) of the participants had a laboratory diagnosis of malaria. Majority, 77.9% (868/1114) of the participants obtained anti-malarial agents without a prescription. Less than a third, 27.7% (309/1114) of the participants obtained a QAACT. Of the participants who obtained QAACT, more than half 56.9% (173/309) reported finding the medicine expensive. The predictors of accessing a QAACT anti-malarial among drug outlet clients include type of drug outlet visited (aPR = 0.74; 95%CI 0.6, 0.91), not obtaining full dose (3-day treatment) of ACT (aPR = 0.49; 95%CI 0.33, 0.73), not finding the ACT expensive (aPR = 1.24; 95%CI 1.03, 1.49), post-primary education (aPR = 1.29; 95%CI 1.07,1.56), business occupation (aPR = 1.24; 95%CI 1.02,1.50) and not having a prescription (aPR = 0.76; 95%CI 0.63, 0.92). CONCLUSION: Less than a third of the private drug outlet clients obtained a QAACT for management of malaria symptoms. Individuals who did not find artemisinin-based combinations to be expensive were more likely to obtain a QAACT anti-malarial. The Ministry of Health needs to conduct regular surveillance to monitor accessibility of QAACT anti-malarial agents under the current private sector copayment mechanism.


Assuntos
Antimaláricos , Artemisininas , Acessibilidade aos Serviços de Saúde , Malária , Uganda , Artemisininas/uso terapêutico , Humanos , Estudos Transversais , Masculino , Feminino , Antimaláricos/uso terapêutico , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Malária/tratamento farmacológico , Adolescente , Quimioterapia Combinada , Inquéritos e Questionários , Idoso
11.
Int J Infect Dis ; 143: 107026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583823

RESUMO

Following a 2-week trip to Kazakhstan, a 42-year-old woman presented at the emergency department in Germany with fever, headache, nausea, and neurological symptoms. An infection with Plasmodium falciparum was rapidly diagnosed. The patient was immediately treated with intravenous artesunate and transferred to an intensive care unit. The initial parasite density was as high as 30% infected erythrocytes with 845,880 parasites/µL. Since Kazakhstan was declared malaria-free in 2012, molecular testing for Plasmodium has been initiated to identify a possible origin. Genotyping of the msp-1 gene and microsatellite markers showed that the parasites are of African origin, with two different alleles indicating a polyclonal infection. After a hospitalization of 10 days, the patient was discharged in good health. Overall, our results emphasize that malaria must be on the list of differential diagnoses for patients with fever of unknown origin, even if they come from countries where malaria does not commonly occur.


Assuntos
Antimaláricos , Malária Falciparum , Plasmodium falciparum , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Feminino , Adulto , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Antimaláricos/uso terapêutico , Cazaquistão , Viagem , Artesunato/uso terapêutico , Genótipo , Artemisininas/uso terapêutico , Proteína 1 de Superfície de Merozoito/genética , Alemanha
12.
Malar J ; 23(1): 125, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685044

RESUMO

BACKGROUND: Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS: Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS: A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/µL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS: The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Artemisininas , Combinação de Medicamentos , Etanolaminas , Fluorenos , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/uso terapêutico , Feminino , Etanolaminas/uso terapêutico , Etanolaminas/farmacocinética , Adolescente , Fluorenos/uso terapêutico , Fluorenos/farmacocinética , Fluorenos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacocinética , Masculino , Gana , Adulto , Adulto Jovem , Criança , Pré-Escolar , Pessoa de Meia-Idade , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Medicamentos Genéricos/uso terapêutico , Resultado do Tratamento , Farmacogenética , Idoso , Lactente
13.
J Vector Borne Dis ; 61(1): 81-89, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648409

RESUMO

BACKGROUND OBJECTIVES: Malaria due to Plasmodium falciparum (Pf) remains a major public threat in India. Artemisinin-based combination therapy (ACT) has been the country's first-line drug for uncomplicated Pf malaria. In 2013-2014, Artesunate plus sulfadoxine (AS+SP) was replaced by Artemether Lumefantrine (AL) as the first- line antimalarial in North East (NE) states of the country which are endemic for Pf malaria. Regular monitoring of antimalarial drugs is of utmost importance to achieve the goal of elimination. This study aimed to assess the efficacy and safety of ACT for treating uncomplicated Pf malaria in the NE states of India. METHODS: A prospective study of 28-day follow-up was conducted to monitor the efficacy and safety of AL from 2018-2019 in four districts, Udalgiri, Meghalaya, Lawngtlai, and Dhalai of NE, India. The clinical and parasitological response and the polymorphism analysis of the Pfdhps, P/dhfr, and Pfkelch 13 gene were evaluated. RESULTS: A total of 234 patients were enrolled in the study out of 216 patients who completed the follow-up to 28 days. One-hundred percent adequate clinical and parasitological responses (ACPR) were observed with polymerase chain reaction (PCR) correction. The genotype results suggest no recrudescence in the treatment-failure patients. The classical single nucleotide polymorphisms (SNP) in the Pfdhfr gene was S108N (94.9%), followed by C59R (91.5%), whereas, in the Pfdhps gene, the common SNP was A437G (79.6%), followed by S3436A. No associated or validated mutations were found in the propeller region of the PfKelch13 gene. INTERPRETATION CONCLUSION: AL was efficacious and safe in uncomplicated P. falciparum malaria in North East India. In contrast, mutations in the genes responsible for sulfadoxine and pyrimethamine resistance have been fixed in northeast India's population.


Assuntos
Antimaláricos , Artemisininas , Quimioterapia Combinada , Malária Falciparum , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Índia , Humanos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Feminino , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Estudos Prospectivos , Adulto , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Resultado do Tratamento , Criança , Pré-Escolar , Combinação Arteméter e Lumefantrina/uso terapêutico , Sulfadoxina/uso terapêutico , Combinação de Medicamentos
14.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673751

RESUMO

Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.


Assuntos
Doença de Alzheimer , Artemisininas , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Artemisininas/química , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
15.
Mol Immunol ; 170: 144-155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669759

RESUMO

OBJECTIVE: Dihydroartemisinin (DHA) plays a very important role in various diseases. However, the precise involvement of DHA in systemic lupus erythematosus (SLE), relation to the equilibrium between M1 and M2 cells, remains uncertain. Therefore, we aimed to investigate the role of DHA in SLE and its effect on the M1/M2 cells balance. METHODS: SLE mice model was established by pristane induction. Flow cytometry was employed to measure the abundance of M1 and M2 cells within the peripheral blood of individuals diagnosed with SLE. The concentrations of various cytokines, namely TNF-α, IL-1ß, IL-4, IL-6, and IL-10, within the serum of SLE patients or SLE mice were assessed via ELISA. Immunofluorescence staining was utilized to detect the deposition of IgG and complement C3 in renal tissues of the mice. We conducted immunohistochemistry analysis to assess the expression levels of Collagen-I, a collagen protein, and α-SMA, a fibrosis marker protein, in the renal tissues of mice. Hematoxylin-eosin staining, Masson's trichrome staining, and Periodic acid Schiff staining were used to examine histological alterations. In this study, we employed qPCR and western blot techniques to assess the expression levels of key molecular markers, namely CD80 and CD86 for M1 cells, as well as CD206 and Arg-1 for M2 cells, within kidney tissue. Additionally, we investigated the involvement of the MAPK signaling pathway. The Venny 2.1 online software tool was employed to identify shared drug-disease targets, and subsequently, the Cytoscape 3.9.2 software was utilized to construct the "disease-target-ingredient" network diagram. Protein-protein interactions of the target proteins were analyzed using the String database, and the network proteins underwent enrichment analysis for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS: The results showed that an increase in M1 cells and a decrease in M2 cells within the peripheral blood of individuals diagnosed with SLE. Further analysis revealed that prednisone (PDN) combined with DHA can alleviate kidney damage and regulate the balance of M1 and M2 cells in both glomerular mesangial cells (GMC) and kidney. The MAPK signaling pathway was found to be involved in SLE kidney damage and M1/M2 balance in the kidney. Furthermore, PDN and/or DHA were found to inhibit the MAPK signaling pathway in GMC and kidney. CONCLUSION: We demonstrated that PDN combined with DHA attenuates SLE by regulating M1/M2 balance through MAPK signaling pathway. These findings propose that the combination of PDN and DHA could serve as a promising therapeutic strategy for SLE, as it has the potential to mitigate kidney damage and reinstate the equilibrium of M1 and M2 cells.


Assuntos
Artemisininas , Lúpus Eritematoso Sistêmico , Sistema de Sinalização das MAP Quinases , Prednisona , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Animais , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Prednisona/farmacologia , Prednisona/uso terapêutico , Humanos , Feminino , Citocinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
16.
J Cell Mol Med ; 28(8): e18335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652216

RESUMO

Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.


Assuntos
Fator 4 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Artemisininas , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Ferroptose/efeitos dos fármacos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Animais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Camundongos Nus , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Feminino , Camundongos Endogâmicos BALB C
17.
Am J Trop Med Hyg ; 110(5): 910-920, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574550

RESUMO

Surveillance for genetic markers of resistance can provide valuable information on the likely efficacy of antimalarials but needs to be targeted to ensure optimal use of resources. We conducted a systematic search and review of publications in seven databases to compile resistance marker data from studies in India. The sample collection from the studies identified from this search was conducted between 1994 and 2020, and these studies were published between 1994 and 2022. In all, Plasmodium falciparum Kelch13 (PfK13), P. falciparum dihydropteroate synthase, and P. falciparum dihydrofolate reductase (PfDHPS) genotype data from 2,953, 4,148, and 4,222 blood samples from patients with laboratory-confirmed malaria, respectively, were extracted from these publications and uploaded onto the WorldWide Antimalarial Resistance Network molecular surveyors. These data were fed into hierarchical geostatistical models to produce maps with a predicted prevalence of the PfK13 and PfDHPS markers, and of the associated uncertainty. Zones with a predicted PfDHPS 540E prevalence of >15% were identified in central, eastern, and northeastern India. The predicted prevalence of PfK13 mutants was nonzero at only a few locations, but were within or adjacent to the zones with >15% prevalence of PfDHPS 540E. There may be a greater probability of artesunate-sulfadoxine-pyrimethamine failures in these regions, but these predictions need confirmation. This work can be applied in India and elsewhere to help identify the treatments most likely to be effective for malaria elimination.


Assuntos
Antimaláricos , Artemisininas , Combinação de Medicamentos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/uso terapêutico , Pirimetamina/farmacologia , Sulfadoxina/uso terapêutico , Sulfadoxina/farmacologia , Índia/epidemiologia , Resistência a Medicamentos/genética , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Marcadores Genéticos , Di-Hidropteroato Sintase/genética , Proteínas de Protozoários/genética
18.
Int Immunopharmacol ; 133: 112157, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678671

RESUMO

In non-small cell lung cancer (NSCLC), identifying a component with certain molecular targets can aid research on cancer treatment. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin which induced the anti-cancer effects via the STAT3 signaling pathway, but the underlying molecular mechanism is still elusive. In this study, we first proved that DHA prohibits the growth of tumors both in vitro and in vivo. Data from transcriptomics showed that DHA reduced the expression level of the genes involved in cell cycle-promoting and anti-apoptosis, and most importantly, DHA restricted the expression level of receptor tyrosine kinase-like orphan receptor 1 (ROR1) which has been reported to have abnormal expression on tumor cells and had close interaction with STAT3 signaling. Then, we performed comprehensive experiments and found that DHA remarkably decreased the expression of ROR1 at both mRNA and protein levels and it also diminished the phosphorylation level of STAT3 in NSCLC cell lines. In addition, our data showed that exogenously introduced ROR1 could significantly enhance the phosphorylation of STAT3 while blocking ROR1 had the opposite effects indicating that ROR1 plays a critical role in promoting the activity of STAT3 signaling. Finally, we found that ROR1 overexpression could partially reverse the decreased activity of STAT3 induced by DHA which indicates that DHA-induced anti-growth signaling is conferred, at least in part, through blocking ROR1-mediated STAT3 activation. In summary, our study indicates that in NSCLC, ROR1 could be one of the critical molecular targets mediating DHA-induced STAT3 retardation.


Assuntos
Artemisininas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Fator de Transcrição STAT3 , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Apoptose/efeitos dos fármacos , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Camundongos Endogâmicos BALB C
19.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
20.
Mol Med ; 30(1): 35, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454322

RESUMO

BACKGROUND: Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS: STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS: Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION: Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.


Assuntos
Artemisininas , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Hipocampo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA