Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890744

RESUMO

Oral delivery of chitosan-coated artesunate (CPA) has been proven to be effective at preventing ulcerative colitis (UC) in mice. However, the anti-inflammatory mechanism is not fully understood. STAT6 is a key transcription factor that promotes anti-inflammatory effects by inducing M2 and Th2 dominant phenotypes, therefore we hypothesized STAT6 might play a key role in the process. To prove it, a STAT6 gene knockout macrophage cell line (STAT6-/- RAW264.7, by CRISPR/Cas9 method), and its corresponding Caco-2/RAW264.7 co-culture system combined with the STAT6 inhibitor (AS1517499, AS) in a mouse UC model were established and studied. The results showed that CPA remarkably suppressed the activation of TLR-4/NF-κB pathway and the mRNA levels of proinflammatory cytokines, while increased the IL-10 levels in RAW264.7. This effect of CPA contributed to the protection of the ZO-1 in Caco-2 which was disrupted upon the stimulation to macrophages. Simultaneously, CPA reduced the expression of CD86 but increase the expression of CD206 and p-STAT6 in LPS-stimulated RAW264.7 cells. However, above alterations were not obvious as in STAT6-/- RAW264.7 and its co-culture system, suggesting STAT6 plays a key role. Furthermore, CPA treatment significantly inhibited TLR-4/NF-κB activation, intestinal macrophage M1 polarization and mucosal barrier injury induced by DSS while promoted STAT6 phosphorylation in the UC mouse model, but this effect was also prominently counteracted by AS. Therefore, our data indicate that STAT6 is a major regulator in the balance of M1/M2 polarization, intestinal barrier integrity and then anti-colitis effects of CPA. These findings broaden our understanding of how CPA fights against UC and imply an alternative treatment strategy for UC via this pathway.


Assuntos
Quitosana , Colite Ulcerativa , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Quitosana/farmacologia , NF-kappa B/metabolismo , Células CACO-2 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Macrófagos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
2.
Adv Mater ; 35(38): e2303357, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310893

RESUMO

Tumor-associated macrophages (TAMs) exhibit an immunosuppressive M2 phenotype and lead to failure of antitumor therapy. Infiltrated erythrocytes during hemorrhage are recognized as a promising strategy for polarizing TAMs. However, novel materials that precisely induce tumor hemorrhage without affecting normal coagulation still face challenges. Here, tumor-targeting bacteria (flhDC VNP) are genetically constructed to realize precise tumor hemorrhage. FlhDC VNP colonizes the tumor and overexpresses flagella during proliferation. The flagella promote the expression of tumor necrosis factor α, which induces local tumor hemorrhage. Infiltrated erythrocytes during the hemorrhage temporarily polarize macrophages to the M1 subtype. In the presence of artesunate, this short-lived polarization is transformed into a sustained polarization because artesunate and heme form a complex that continuously produces reactive oxygen species. Therefore, the flagella of active tumor-targeting bacteria may open up new strategies for reprogramming TAMs and improving antitumor therapy.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Artesunato/metabolismo , Neoplasias/patologia , Bactérias , Flagelos/patologia , Hemorragia , Microambiente Tumoral
3.
Inflamm Res ; 72(5): 1037-1050, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37024544

RESUMO

INTRODUCTION: Metabolic reprogramming is one of the important mechanisms of cell differentiation, and different cells have different preferences for energy sources. During the differentiation of naive CD4 + T cells into Th17 and Treg cells, these cells show specific energy metabolism characteristics. Th17 cells depend on enhanced glycolysis, fatty acid synthesis, and glutaminolysis. In contrast, Treg cells are dependent on oxidative phosphorylation, fatty acid oxidation, and amino acid depletion. As a potent antimalarial drug, artesunate has been shown to modulate the Th17/Treg imbalance and regulate cell metabolism. METHODOLOGY: Relevant literatures on ART, cellular metabolism, glycolysis, lipid metabolism, amino acid metabolism, CD4 + T cells, Th17 cells, and Treg cells published from January 1, 2010 to now were searched in PubMed database. CONCLUSION: In this review, we will highlight recent advances in which artesunate can restore the Th17/Treg imbalance in disease states by altering T-cell metabolism to influence differentiation and lineage selection. Data from the current study show that few studies have focused on the effect of ART on cellular metabolism. ART can affect the metabolic characteristics of T cells (glycolysis, lipid metabolism, and amino acid metabolism) and interfere with their differentiation lineage, thereby regulating the balance of Th17/Treg and alleviating the symptoms of the disease.


Assuntos
Linfócitos T Reguladores , Células Th17 , Células Th17/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Ácidos Graxos/metabolismo
4.
Basic Clin Pharmacol Toxicol ; 132(5): 369-383, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36815716

RESUMO

Intracerebral haemorrhage (ICH) is a catastrophic subtype of stroke with severe morbidity and mortality. However, little progress has been made in the subsequent secondary injury. Artesunate, a water-soluble semi-synthetic derivative of artemisinin, exhibits remarkable pharmacological effects on anti-neuroinflammation. However, the effects of artesunate on ICH remain unknown. In the present study, haemoglobin (Hb) treatment in BV2 cell and collagenase type IV intracerebroventricular injection in Sprague-Dawley rats were used to establish in vitro and in vivo ICH models, respectively. For in vivo, the neurological scores, haematoma volume, brain oedema, inflammatory factors and iron deposition were evaluated. Besides, lipopolysaccharide (LPS) was used in in vitro to polarize BV2 cell to M1 phenotype. Cell viability, cellular reactive oxygen species (ROS), Fe2+ concentration, and lipid peroxidation levels, ferroptosis-associated proteins and mRNA, morphological of mitochondria were measured in vitro. Additionally, the AMP-activated protein kinase (AMPK)/mammalian/mechanistic target of rapamycin (mTOR) pathway were measured by western blot and immunofluorescence staining. The present in vivo results indicated that artesunate significantly ameliorated neurological deficits, haematoma volume and brain oedema in ICH rats. Besides, artesunate suppressed the M1-microglia relative inflammatory factors and up-regulated iron deposition. For in vitro, artesunate significantly selectively decreased the viability of LPS-stimulated BV2 cell. Furthermore, ROS and lipid peroxidation levels were up-regulated. And the glutathione peroxidase 4 (GPX4) were silenced via the AMPK/mTORC1 axis. Our finding supports that artesunate ameliorates the ICH secondary injury both in vitro and in vivo by inducing ferroptosis in microglia and further inhibiting inflammation mainly through the AMPK/mTORC1/GPX4 pathway. This finding may provide a novel target for ICH treatment.


Assuntos
Edema Encefálico , Lesões Encefálicas , Ferroptose , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Hematoma/complicações , Hematoma/metabolismo , Inflamação/metabolismo , Ferro/farmacologia , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Mol Neurodegener ; 18(1): 7, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707892

RESUMO

BACKGROUND: PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aß transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aß clearance at the BBB, which worsens Aß pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aß pathology. METHODS: To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aß pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS: Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aß42 and Aß40 levels and Aß and thioflavin S-load in the cortex and hippocampus, and vascular Aß load by 34-51%. Artesunate also increased circulating Aß42 and Aß40 levels by 2-fold confirming accelerated Aß clearance from brain to blood. Consistent with reduced Aß pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS: Artesunate increases PICALM levels and Aß clearance at the BBB which prevents development of Aß pathology and functional deficits in mice and holds potential for translation to human AD.


Assuntos
Doença de Alzheimer , Antimaláricos , Proteínas Monoméricas de Montagem de Clatrina , Animais , Camundongos , Humanos , Lactente , Barreira Hematoencefálica/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Artesunato/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Células Endoteliais/metabolismo , Células HEK293 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/farmacologia
6.
Hum Mol Genet ; 32(8): 1324-1333, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36434787

RESUMO

The objective of this study was to discuss the mechanism of artesunate (ART) in improving cartilage damage in osteoarthritis (OA) by regulating the expression levels of metastatic tumor antigen 1 (MTA1), lipoxin A4 (LXA4) and the downstream JAK2/STAT3 signaling pathway. The OA model in vitro was constructed by stimulating chondrocytes for 24 h with 10 ng/mL interleukin (IL)-1ß, and cell proliferation and apoptosis, expression levels of Aggrecan, MTA1, LXA4, MMP3, MMP13 and Collagen II, and inflammatory cytokines in the culture supernatants were examined. Histopathological changes, inflammatory response and chondrocyte apoptosis of the cartilage tissues of OA mice were performed. In vitro cell experiments, ART enhanced cell proliferation capacity, accompanied by decreased apoptosis rate, decreased expression of MMP-3 and MMP-13, elevated expression of Collagen II and Aggrecan, as well as reduced levels of IL-6 and TNF-α in the cell supernatant. ART also ameliorated IL-1ß-induced chondrocyte damage by upregulating MTA1. The LXA4 promoter region had two potential binding sites for MTA1. There was a positive correlation between MTA1 and LXA4. MTA1 enhanced the expression of LXA4 through transcription and blocked the activation of the JAK2/STAT3 signaling pathway. In vivo animal model experiments further showed that ART treatment alleviated cartilage tissue damage in OA model mice by upregulating MTA1. Our study demonstrates that ART improves the cartilage damage of OA by upregulating MTA1 expression and promoting the transcriptional activation of LXA4, and further blocking the JAK2/STAT3 signaling pathway.


Assuntos
Neoplasias , Osteoartrite , Camundongos , Animais , Artesunato/metabolismo , Ativação Transcricional , Agrecanas/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Colágeno/metabolismo , Neoplasias/patologia , Interleucina-1beta/metabolismo
7.
Regen Med ; 17(11): 819-833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36184881

RESUMO

Aim: Effect of artesunate (ART)-treated bone marrow-derived mesenchymal stem cells-derived exosomes (BMSC-Exos) on osteogenesis and its underlying mechanisms were investigated. Materials & methods: Proliferation, alkaline phosphatase activity and calcified nodule formation of osteoblasts were determined. A mouse model of osteoporosis was established by ovariectomy. Results: SNHG7 was upregulated in BMSC-Exos by twofold, which was further enhanced in ART-BMSC-Exos by about twofold. ART intensified BMSC-Exos-induced proliferation, alkaline phosphatase activity by about fourfold, calcified nodule formation by about threefold and upregulation of osteogenesis related molecules RUNX2 (by 50%), BMP2 (by 30%) and ATF4 (by 40%) via delivering SNHG7. Mechanistically, SNHG7 recruited TAF15 to facilitate RUNX2 stability. Conclusion: ART-BMSC-Exos facilitated osteogenesis via delivering SNHG7 by modulating TAF15/RUNX2 axis.


Osteoporosis is the most common and complex skeletal disorder worldwide. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC-Exos) have been recognized as an ideal seed source for bone tissue regeneration. We aimed to explore the effect of artesunate (ART)-BMSC-Exos on osteogenesis and its underlying mechanisms. The results showed that ART-BMSC derived exosomal SNHG7 facilitated osteoblast activity and attenuated osteogenesis in mice by modulating TAF15/RUNX2 pathway. Our findings contribute to a better understanding of the therapeutic mechanisms of ART-BMSCs-Exos for osteoporosis and suggest ART-BMSC-Exos as a novel therapeutic option for osteoporosis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , RNA não Traduzido/genética , Fatores Associados à Proteína de Ligação a TATA , Fosfatase Alcalina/metabolismo , Animais , Artesunato/metabolismo , Artesunato/farmacologia , Medula Óssea , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/metabolismo , Osteogênese , Fatores Associados à Proteína de Ligação a TATA/metabolismo
8.
Acta Biomater ; 152: 406-424, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055613

RESUMO

The signaling cascade between nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1α (HIF-1α) can be activated by proinflammatory M1 macrophages in rheumatoid arthritis (RA), which produces reactive oxygen species (ROS) and enhances M1 macrophage polarization, thus aggravating the development of RA. Therefore, an ROS-responsive artesunate prodrug micellar nanosystem for co-delivery of dexamethasone (DEX/HA-TK-ART micelles, abbreviated as DEX/HTA) was developed for synergistic inhibition of the HIF-1α/NF-κB cascade to regulate ROS scavenging and macrophage repolarization in RA combination therapy. DEX/HTA micelles displayed prolonged circulation in blood and efficiently co-delivered ART&DEX in the inflamed joints of adjuvant-induced arthritis (AIA) rats; moreover, they were specifically recognized and internalized into M1 macrophages through CD44 receptor-mediated endocytosis. ROS-responsive co-released ART&DEX then exerted a synergistic action to efficiently perform ROS scavenging and repolarization of M1 to M2 macrophages by inhibition of the HIF-1α/NF-κB cascade. The intravenous administration of DEX/HTA micelles into AIA rat models significantly alleviated inflammatory cell infiltration and repaired cartilage injury in the joint. Collectively, our study highlights the therapeutic potential of DEX/HTA micelles for treating RA through synergistic inhibition of the HIF-1α/NF-κB signaling cascade to regulate ROS scavenging and macrophage repolarization. STATEMENT OF SIGNIFICANCE: An ROS-responsive artesunate (ART) prodrug micellar nanosystem for co-delivering dexamethasone (DEX), abbreviated as DEX/HA-TK-ART micelle, was developed for synergistic cascade regulation of the HIF-1α/NF-κB pathway on ROS scavenging and macrophage repolarization in combination therapy for rheumatoid arthritis. The well-designed nanosystem showed prolonged circulation in blood and superior ART&DEX accumulation in the inflamed joints of AIA rats; moreover, the micelles were specifically internalized into M1 macrophages and co-released ART&DEX, subsequently leading to inhibition of the HIF-1α/NF-κB pathway for ROS scavenging and macrophage repolarization, thus generating synergistic anti-inflammatory effects in RAW 264.7 cells and AIA rats. The HIF-1α/NF-κB cascade regulation on ROS scavenging and macrophage repolarization based on ART&DEX combination with smart nanotechnology could serve as a promising approach for rheumatoid arthritis therapy.


Assuntos
Artrite Reumatoide , Pró-Fármacos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/metabolismo , Micelas , NF-kappa B/metabolismo , Pró-Fármacos/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
J Nanobiotechnology ; 20(1): 376, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964052

RESUMO

Breast cancer is the leading cause of cancer-related deaths in women and remains a formidable therapeutic challenge. Mitochondria participate in a myriad of essential cellular processes, such as metabolism, and are becoming an ideal target for cancer therapy. Artemisinin and its derivatives have demonstrated multiple activities in the context of various cancers. Mitochondrial autophagy(mitophagy) is one of the important anti-tumor mechanisms of artemisinin drugs. However, the lack of specific tumor targeting ability limits the anti-tumor efficacy of artemisinin drugs. In this study, a GSH-sensitive artesunate smart conjugate (TPP-SS-ATS) was synthesized and liposomes (TPP-SS-ATS-LS) that target tumor cells and mitochondria were further prepared. The advantages of TPP-SS-ATS-LS targeting to the breast tumor were verified by in vivo and in vitro evaluations. In our study, the cytotoxicity was obviously enhanced in vitro and tumor growth inhibition rate was increased from 37.7% to 56.4% at equivalent artesunate dosage in breast cancer orthotopic implanted mice. Meanwhile, mitochondrial dysfunction, suppression of ATP production and respiratory capacity were detected in breast cancer cells. We further discovered that TPP-SS-ATS-LS inhibited tumor cells proliferation through mitophagy by regulating PHB2 and PINK1 expression. These results provide new research strategies for the development of new artemisinin-based anti-tumor drugs.


Assuntos
Artemisininas , Neoplasias , Pró-Fármacos , Animais , Artemisininas/metabolismo , Artemisininas/farmacologia , Artesunato/metabolismo , Artesunato/farmacologia , Feminino , Humanos , Lipossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Pró-Fármacos/farmacologia
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(4): 338-346, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35583064

RESUMO

Objective To investigate the effect of artesunate (ART) on T lymphocyte immune function in patients with lung cancer. Methods Fifteen healthy people (NC group) and twenty-one lung cancer patients (LC group) were randomly selected to collect their clinical information and isolate peripheral blood mononuclear cells (PBMCs). After 24 hour-treatment of PBMCs with ART, the median lethal concentration (LC50) and the optimal concentration of ART induced high expression of CD39 and CD279 in T cell membrane were determined by flow cytometry (FCM). Following the induction of ART with the best concentration, the expression levels of CD39 and CD279 on CD8+ and CD4+ T cells in NC group, and the expression levels of CD39, CD279, CD38, CD28, granzyme B (GrzB), perforin (PerF), interferon γ(IFN-γ) and interleukin-2 (IL-2) on CD8+ and CD4+ T cells in LC group were detected by FCM. Results LC50 and optimal concentration of ART were 522 µmol/L and 200 µmol/L, respectively. Compared with the NC group, the baseline expression levels of CD279 on CD8+ and CD4+ T cells in LC group was significantly higher. Moreover, the expression levels of CD39 increased significantly after inducing 200 µmol/L ART, in the CD8+ and CD4+ T cell of NC groups; In CD8+ and CD4+ T cells of LC group, the expression of CD39, CD279 and GrzB increased significantly, while that of IL-2 decreased markedly. No significant difference was detected in the expression levels of CD38, CD28, IFN-γ and PerF. The clinical factors that promote the expression of CD39 on CD8+ T cells induced by ART showed no radiotherapy. The clinical factors that promote the expression of CD279 on CD8+ T cells induced by ART include age>60 years old, lymphocyte count>1.26×109/L, NLR<5, radiotherapy, 0.29×109/L ≤monocyte count ≤0.95×109/L. Conclusion The expression of CD279 on T lymphocytes is higher in lung cancer patients; ART induces the upregulation of CD8+ and CD4+T cells CD39, CD279 and GrzB in lung cancer patients, thus regulating the immune function of T cell subsets.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Artesunato/metabolismo , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Contagem de Linfócitos , Pessoa de Meia-Idade
11.
Mol Neurobiol ; 59(8): 4718-4729, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596896

RESUMO

Promoting neurogenesis and proliferation of endogenous neural stem/progenitor cells (NSPCs) is considered a promising strategy for neurorehabilitation after stroke. Our previous study revealed that a moderate dose of artesunate (ART, 150 mg/kg) could enhance functional recovery in middle cerebral artery occlusion (MCAO) mice. This study aimed to investigate the effects of ART treatment on neurogenesis and proliferation of NSPCs using a rodent MCAO model. MRI results indicated that the ischemic brain volume of MCAO mice was reduced by ART treatment. The results of diffusion tensor imaging, electron microscopic, and immunofluorescence of Tuj-1 also revealed that ischemia-induced white matter lesion was alleviated by ART treatment. After ischemia/reperfusion, the proportion of Brdu + endogenous NSPCs in the ipsilateral subventricular zone and peri-infarct cortex was increased by ART treatment. Furthermore, the neuro-restorative effects of ART were abolished by the overexpression of FOXO3a. These findings suggested that ART could rescue ischemia/reperfusion damage and alleviate white matter injury, subsequently contributing to post-stroke functional recovery by promoting neurogenesis and proliferation of endogenous NSPCs via the FOXO3a/p27Kip1 pathway.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Acidente Vascular Cerebral , Animais , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Isquemia Encefálica/patologia , Proliferação de Células , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese , Acidente Vascular Cerebral/patologia
12.
J Neurochem ; 162(3): 290-304, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598091

RESUMO

Alzheimer's disease (AD) remains a leading cause of dementia and no therapy that reverses underlying neurodegeneration is available. Recent studies suggest the protective role of artemisinin, an antimalarial drug, in neurological disorders. In this study, we investigated the therapeutic potential of artesunate, a water-soluble derivative of artemisinin, on amyloid-beta (Aß)-treated challenged microglial BV-2, neuronal N2a cells, and the amyloid precursor protein/presenilin (APP/PS1) mice model. We found that Aß significantly induced multiple AD-related phenotypes, including increased expression/production of pro-inflammatory cytokines from microglial cells, enhanced cellular and mitochondrial production of reactive oxygen species, promoted mitochondrial fission, inhibited mitochondrial fusion, suppressed mitophagy or biogenesis in both cell types, stimulated apoptosis of neuronal cells, and microglia-induced killing of neurons. All these in vitro phenotypes were attenuated by artesunate. In addition, the over-expression of the mitochondrial fission protein Drp-1, or down-regulation of the mitochondrial fusion protein OPA-1 both reduced the therapeutic benefits of artesunate. Artesunate also alleviated AD phenotypes in APP/PS1 mice, reducing Aß deposition, and reversing deficits in memory and learning. Artesunate protects neuronal and microglial cells from AD pathology, both in vitro and in vivo. Maintaining mitochondrial dynamics and simultaneously targeting multiple AD pathogenic mechanisms are associated with the protective effects of artesunate. Consequently, artesunate may become a promising therapeutic for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Presenilina-1/genética
13.
Neuroscience ; 487: 88-98, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026318

RESUMO

The experimental investigations on the pathogenesis of remifentanil-induced hyperalgesia (RIH) have been primarily conducted, but the effective treatment of RIH remains unclear. Recent reports highlight the necessity of ionotropic glutamate receptors in oxidative damage in spinal nociceptive transduction. Artesunate, the 1st-line anti-malaria drug, has been identified to be valid in removing superoxide in several pathological conditions. This study evaluated whether artesunate inhibits RIH via regulating metabotropic glutamate receptor 5 (mGluR5) and mitochondrial antioxidant enzyme peroxiredoxin-3 in rats. Artesunate was injected intrathecally 10 min before intravenous infusion of remifentanil (1 µg·kg-1·min-1 for 60 min) in rats. The antinociception of artesunate was verified by assessment of paw withdrawal mechanical threshold and paw withdrawal thermal latency. Spinal mGluR5 expression and peroxiredoxin-3 hyperacetylation were examined. Also, both the mGluR5 agonist DHPG and antagonist MPEP were utilized to explore the involvement of mGluR5 in the anti-hyperalgesic property of artesunate. Here, we found that artesunate (10 µg and 100 µg but not 1 µg) prevented RIH in a dose-dependent manner. Artesunate reduced remifentanil-related spinal over-expression of mGluR5 gene and protein, and hyperacetylation of peroxiredoxin-3. Intrathecal application of MPEP (10 nmol and 100 nmol but not 1 nmol) inhibited behavioral RIH and peroxiredoxin-3 acetylation. Moreover, hyperalgesia and peroxiredoxin-3 hyperacetylation were attenuated after the combination of artesunate (1 µg) and MPEP (1 nmol). Additionally, artesunate treatment reversed acute pain and peroxiredoxin-3 hyperacetylation following spinal exposure to DHPG. In conclusion, intrathecal injection of artesunate impairs RIH by down-regulating spinal mGluR5 expression and peroxiredoxin-3 hyperacetylation-mediated oxidative stress in rats.


Assuntos
Hiperalgesia , Receptor de Glutamato Metabotrópico 5 , Animais , Artesunato/metabolismo , Artesunato/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Peroxirredoxina III/metabolismo , Peroxirredoxina III/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Remifentanil/efeitos adversos , Medula Espinal/metabolismo
14.
J Surg Res ; 267: 404-413, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34225053

RESUMO

BACKGROUND: The inflammatory reaction is an important mechanism of pathogenesis of abdominal aortic aneurysm (AAA). Artesunate (AS) has been found to have anti-inflammatory effects in cardiovascular disease. The purpose of this study was to investigate whether AS could inhibit the development of AAA. MATERIALS AND METHODS: AngII infused ApoE (-/-) male mice were selected as AAA model. Mice were spilt into three groups, the experimental control group (AngII), the AS treatment group (AngII + AS) and the negative control group (Vehicle) with 14 in each group. Daily administration of AS (100 mg/kg/d) or vehicle performed 3 day before the perfusion. At the end of the 28-day experiment, animal ultrasound and electronic digital caliper were used to measure the diameter of abdominal aorta. Histologic assays were performed to observe the microstructure of the aorta wall. Immunofluorescence staining was performed to detect inflammatory cells, as well as the levels of matrix metalloproteinases (MMPs). The transcription of cytokines and adhesion molecules were investigated by real-time fluorescence quantitative PCR (qPCR). Western blotting was performed to determine whether the NF-κB pathway is involved in the mechanism. RESULTS: While AS failed to reduce the incidence of AAA, AS effectively reduced the diameter of AAA independently of blood pressure effects. Immunofluorescence detection showed that AS effectively reduced the levels of CD45+ cells and MAC3+ macrophages as well as MMP-2 and MMP-9. qPCR revealed that AS reduced mRNA transcription levels of MMP-2, MMP-9, the cytokine IL-1ß, TNF-α, adhesion molecules ICAM-1, VCAM-1. AS decreased the levels of NF-κB signaling pathway in aorta. CONCLUSIONS: AS can attenuate the development of AAA in mice. The possible mechanism is anti-inflammation.


Assuntos
Aneurisma da Aorta Abdominal , Angiotensina II , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/prevenção & controle , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 12(1): 1704, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731716

RESUMO

GPR37 was discovered more than two decades ago, but its biological functions remain poorly understood. Here we report a protective role of GPR37 in multiple models of infection and sepsis. Mice lacking Gpr37 exhibited increased death and/or hypothermia following challenge by lipopolysaccharide (LPS), Listeria bacteria, and the mouse malaria parasite Plasmodium berghei. Sepsis induced by LPS and Listeria in wild-type mice is protected by artesunate (ARU) and neuroprotectin D1 (NPD1), but the protective actions of these agents are lost in Gpr37-/- mice. Notably, we found that ARU binds to GPR37 in macrophages and promotes phagocytosis and clearance of pathogens. Moreover, ablation of macrophages potentiated infection, sepsis, and their sequelae, whereas adoptive transfer of NPD1- or ARU-primed macrophages reduced infection, sepsis, and pain-like behaviors. Our findings reveal physiological actions of ARU in host cells by activating macrophages and suggest that GPR37 agonists may help to treat sepsis, bacterial infections, and malaria.


Assuntos
Macrófagos/metabolismo , Dor/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Sepse/prevenção & controle , Transferência Adotiva , Animais , Artesunato/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Lipopolissacarídeos/toxicidade , Listeria monocytogenes/patogenicidade , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Dor/imunologia , Dor/mortalidade , Fagocitose/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Receptores Acoplados a Proteínas G/deficiência , Sepse/imunologia , Sepse/mortalidade , Sepse/terapia
16.
Acta Histochem ; 122(7): 151601, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33066846

RESUMO

BACKGROUND: Osteoporosis is characterised by impairment of microarchitecture and bone mass. Therapeutic strategy promoting osteoblast differentiation is considered as a promising direction for the treatment of osteoporosis. Artesunate (ART) is related to osteoporosis, but the relationship between ART and osteogenic differentiation is still unknown. METHODS: Cells proliferation were measured by MTT, ALP activity assay and Alizarin Red S staining were used to assess osteogenic differentiation of hBMSCs. Western blotting and qRT-PCR were applied for measuring expression of protein and mRNA, respectively. The relationship between miR-34a and Dickkopf-1 (DKK1) was detected by dual luciferase reporter assay. RESULTS: The expression of osteoblasts differentiation related proteins (Runx2, OCN, and OPN) were significantly increased by ART. And ART accelerates the osteoblasts differentiation of hBMSCs through promoting Wnt signaling pathway by DKK1 inhibition. Significant higher expression of miR-34a and lower expression of DKK1 could be induced by ART. We firstly proved that miR-34a could bind DKK1 specifically. CONCLUSION: ART could promote osteoblast differentiation through miR-34a/DKK1/Wnt pathway. Therefore, our findings may provide a new thought for the treatment of osteoporosis by ART through osteoblast differentiation promotion.


Assuntos
Artesunato/farmacologia , Diferenciação Celular/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Artesunato/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/fisiologia , Osteoporose/genética , Osteoporose/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
17.
Int J Biol Macromol ; 164: 3369-3375, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861782

RESUMO

The present study aims to evaluate the inhibitory effects of artesunate (a semi-synthetic derivative of artemisinin) on HSP70 and Bcl-2 expression in two breast cancer cell lines, 4T1 and MCF-7. In addition, to determine in vitro inhibitory effect of artesunate against the ATPase activity of purified recombinant HSP70, it was tested in a carbonic anhydrase refolding assay with purified HSP70. Our results demonstrated that the artesunate not only induced apoptosis but also lead to the inhibition of HSP70 ATPase activity the in vitro (P < 0.001). The extent of HSP70 refolding inhibition increased with increasing µM concentrations of artesunate. Incubation of HSP70 with 50 µM artesunate showed significant inhibition of refolding activity by 38%. The IC50 values of artesunate for 4T1 cells, were lower than MCF-7 cells, indicating the higher sensitivity of the triple-negative phenotype. Furthermore, artesunate significantly down-regulated the expression of Bcl-2 and HSP70 while enhancing the expression of cleaved caspase-9 in MCF-7 and 4T1 cells. It also induced caspase-9 activity at 18 h in a dose-dependent manner in two breast cancer cell lines. Generally, our results show that the artesunate induces caspase-dependent apoptosis through the inhibition of HSP70 expression.


Assuntos
Artesunato/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Choque Térmico HSP70/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Apoptose/efeitos dos fármacos , Artesunato/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Concentração Inibidora 50 , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Molecules ; 25(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197531

RESUMO

Artesunate was well known as an antimalarial drug. Our previous research found that it has hypolipidemia effects in rabbits fed with a high-fat diet, especially combined with ursolic acid. In this study, we reconfirmed the lipid-lowering effect of artesunate and ursolic acid in hamsters and analyzed the metabolic changes using gas chromatography time-of-flight mass spectrometry (GC/TOF MS). Compared with the model group, a variety of different metabolites of artesunate and ursolic acid, alone or in combination, were found and confirmed. These differential metabolites, including fatty acids, lipids, and amino acids, were involved in lipid metabolism, energy metabolism, and amino acid metabolism. It indicated that two agents of artesunate and ursolic acid could attenuate or normalize the metabolic transformation on these metabolic pathways.


Assuntos
Ração Animal , Artesunato/metabolismo , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Metabolômica , Triterpenos/metabolismo , Animais , Cricetinae , Mesocricetus , Ácido Ursólico
19.
Biomed Chromatogr ; 34(2): e4718, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31642080

RESUMO

There have been reports of fake artesunate (ART), which has led to deaths from untreated malaria in South East Asia. To rapidly screen for fake and adulterated ART products in the drug market, a lateral flow immunoassay (LFIA) based on a colloidal gold-monoclonal antibody probe for detection of ART within samples was developed. With this method, the calibration curve for ART was determined by the intensity ratio of the test and control bands at various ART concentrations. The linearity range was 12.5-200 µg/ml of ART. Samples were tested by the developed LFIA and can be calculated for ART contents. The levels of ART in the samples were also confirmed by enzyme-linked immunosorbent assay. The results of the two methods were in good conformance. The proposed LFIA was demonstrated to be a simple and rapid analytical method for detecting ART in the pharmaceutical formulation.


Assuntos
Anticorpos Monoclonais/metabolismo , Artesunato/análise , Imunoensaio/métodos , Artesunato/química , Artesunato/metabolismo , Artesunato/normas , Medicamentos Falsificados/análise , Medicamentos Falsificados/química , Medicamentos Falsificados/metabolismo , Desenho de Equipamento , Coloide de Ouro/química , Imunoensaio/instrumentação , Modelos Lineares
20.
J Sep Sci ; 41(18): 3538-3546, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30062857

RESUMO

An analytical approach using a modified quick, easy, cheap, effective, rugged, and safe extraction method followed by liquid chromatography with electrospray ionization tandem mass spectrometry was developed herein for the determination of artesunate and its metabolite, dihydroarteminsinin in porcine muscle, egg, eel, flatfish, and shrimp. 10% trichloroacetic acid in acetonitrile mixed with ethyl acetate was used as an extraction solvent. To obtain a good separation, a Phenomenex Kinetex reversed-phase analytical column was selected with mobile phase consisting of distilled water (A) and acetonitrile (B), both containing 0.05% formic acid. Good linearity was achieved using matrix-matched calibrations constructed from six concentrations (5-50 µg/kg) with determinant coefficients ≥0.9918. Recoveries estimated from three spiking concentrations (5, 10, and 20 µg/kg) ranged between 71.3 and 104.7% in all matrixes with relative standard deviations ≤8.3%. A variety of samples purchased from markets in Seoul were tested following the protocol described herein. The artesunate and dihydroarteminsinin were not detected in any matrix. The methodology proposed could be used for routine determination of artesunate and its metabolite, dihydroartemisinin in various animal products having variable percentages of fat and protein.


Assuntos
Artemisininas/análise , Artesunato/análise , Animais , Artemia , Artemisininas/metabolismo , Artesunato/metabolismo , Cromatografia Líquida , Enguias , Peixes , Conformação Molecular , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA