Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446786

RESUMO

Curcumin and artemisinin are commonly used in traditional East Asian medicine. In this study, we investigated the inhibitory effects of these active compounds on xanthine oxidase (XO) using allopurinol as a control. XO was purified from the serum of arthritis patients through ammonium sulfate precipitation (65%) and ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose. The specific activity of the purified enzyme was 32.5 U/mg protein, resulting in a 7-fold purification with a yield of 66.8%. Molecular docking analysis revealed that curcumin had the strongest interaction energy with XO, with a binding energy of -9.28 kcal/mol. The amino acid residues Thr1077, Gln762, Phe914, Ala1078, Val1011, Glu1194, and Ala1079 were located closer to the binding site of curcumin than artemisinin, which had a binding energy of -7.2 kcal/mol. In vitro inhibition assays were performed using nanocurcumin and artemisinin at concentrations of 5, 10, 15, 20, and 25 µg/mL. Curcumin inhibited enzyme activity by 67-91%, while artemisinin had a lower inhibition ratio, which ranged from 40-70% compared to allopurinol as a control.


Assuntos
Artemisininas , Artrite , Curcumina , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/sangue , Curcumina/química , Curcumina/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Humanos , Artrite/sangue , Artrite/enzimologia , Simulação de Acoplamento Molecular , Alopurinol/química , Alopurinol/farmacologia , Ligação Proteica
2.
Ann Rheum Dis ; 80(2): 250-260, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33162397

RESUMO

OBJECTIVES: The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) plays a well-characterised role in the metabolism and activation of endogenous glucocorticoids (GCs). However, despite its potent upregulation at sites of inflammation, its role in peripheral metabolism and action of therapeutic GCs remains poorly understood. We investigated the contribution of 11ß-HSD1 to the anti-inflammatory properties of the active GC corticosterone, administered at therapeutic doses in murine models of polyarthritis. METHODS: Using the tumour necrosis factor-tg and K/BxN serum-induced models of polyarthritis, we examined the anti-inflammatory properties of oral administration of corticosterone in animals with global, myeloid and mesenchymal targeted transgenic deletion of 11ß-HSD1. Disease activity and joint inflammation were scored daily. Joint destruction and measures of local and systemic inflammation were determined by histology, micro-CT, quantitative RT-PCR, fluorescence activated cell sorting and ELISA. RESULTS: Global deletion of 11ß-HSD1 resulted in a profound GC resistance in animals receiving corticosterone, characterised by persistent synovitis, joint destruction and inflammatory leucocyte infiltration. This was partially reproduced with myeloid, but not mesenchymal 11ß-HSD1 deletion, where paracrine GC signalling between cell populations was shown to overcome targeted deletion of 11ß-HSD1. CONCLUSIONS: We identify an entirely novel component of therapeutic GC action, whereby following their systemic metabolism, they require peripheral reactivation and amplification by 11ß-HSD1 at sites of inflammation to deliver their anti-inflammatory therapeutic effects. This study provides a novel mechanistic understanding of the anti-inflammatory properties of therapeutic GCs and their targeting to sites of inflammation in polyarthritis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Anti-Inflamatórios/farmacologia , Artrite/tratamento farmacológico , Corticosterona/farmacologia , Glucocorticoides/farmacologia , Animais , Artrite/enzimologia , Modelos Animais de Doenças , Camundongos
3.
Anal Chem ; 92(16): 10971-10978, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32674562

RESUMO

Detecting myeloperoxidase (MPO) activity in living organisms is important because MPO contributes to the pathogenesis of many diseases such as rheumatoid arthritis and other inflammatory diseases, artherosclerosis, neurodegenerative disease, and some cancers. However, rapid and effective methods for the detection of basal MPO activity in living systems have not yet been reported. Herein, we report a near-infrared (NIR) emissive "turn-on" probe FD-301 that can specifically bind to MPO and accurately measure MPO activity in living cells and in vivo via a rapid response to initial hypochlorous acid (HOCl), produced by MPO. Notably, FD-301 could detect the basal level of MPO activity in human promyelocytic leukemia cells (HL-60) and could discriminate between MPO high-expression and low-expression cells. Furthermore, FD-301 was successfully applied to in vivo imaging of MPO in MPO-dependent diseases, such as arthritis and inflammatory bowel disease.


Assuntos
Corantes Fluorescentes/química , Peroxidase/análise , Fenotiazinas/química , Doença Aguda , Animais , Artrite/enzimologia , Colo/patologia , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/efeitos da radiação , Células HL-60 , Humanos , Ácido Hipocloroso/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Raios Infravermelhos , Masculino , Camundongos , Imagem Óptica , Peroxidase/metabolismo , Fenotiazinas/metabolismo , Fenotiazinas/efeitos da radiação , Ligação Proteica , Células RAW 264.7
4.
Cell Death Differ ; 27(1): 161-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101885

RESUMO

The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases. Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1 D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibody-induced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression and metastases.


Assuntos
Inflamação/enzimologia , Neoplasias/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Artrite/enzimologia , Morte Celular , Linhagem Celular , Linhagem Celular Tumoral , Colite/etiologia , Colite/prevenção & controle , Dermatite/enzimologia , Feminino , Técnicas de Introdução de Genes , Humanos , Ileíte/etiologia , Ileíte/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Melanoma Experimental/patologia , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
5.
J Biol Chem ; 294(42): 15495-15504, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31484722

RESUMO

Destruction of the cartilage matrix in joints is an important feature of arthritis. Proteolytic degradation of cartilage glycoproteins can contribute to the loss of matrix integrity. Human inter-α-inhibitor (IαI), which stabilizes the extracellular matrix, is composed of the light-chain serine proteinase inhibitor bikunin and two homologous heavy chains (HC1 and HC2) covalently linked through chondroitin 4-sulfate. Inflammation promotes the transfer of HCs from chondroitin 4-sulfate to hyaluronan by tumor necrosis factor-stimulated gene-6 protein (TSG-6). This reaction generates a covalent complex between the heavy chains and hyaluronan that can promote leukocyte invasion. This study demonstrates that both IαI and the HC-hyaluronan complex are substrates for the extracellular matrix proteases ADAMTS-5 and matrix metalloprotease (MMP) -3, -7, and -13. The major cleavage sites for all four proteases are found in the C terminus of HC2. ADAMTS-5 and MMP-7 displayed the highest activity toward HC2. ADAMTS-5 degradation products were identified in mass spectrometric analysis of 29 of 33 arthropathic patients, indicating that ADAMTS-5 cleavage occurs in synovial fluid in arthritis. After cleavage, free HC2, together with TSG-6, is able to catalyze the transfer of heavy chains to hyaluronan. The release of extracellular matrix bound HC2 is likely to increase the mobility of the HC2/TSG-6 catalytic unit and consequently increase the rate of the HC transfer reaction. Ultimately, ADAMTS-5 cleavage of HC2 could alter the physiological and mechanical properties of the extracellular matrix and contribute to the progression of arthritis.


Assuntos
Proteína ADAMTS5/metabolismo , alfa-Globulinas/metabolismo , Artrite/enzimologia , Líquido Sinovial/enzimologia , Proteína ADAMTS5/genética , alfa-Globulinas/química , alfa-Globulinas/genética , Motivos de Aminoácidos , Artrite/genética , Artrite/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Líquido Sinovial/metabolismo
6.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340433

RESUMO

Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases.


Assuntos
Aminoácido Oxirredutases/genética , Artrite/genética , Fissura Palatina/genética , Doenças do Tecido Conjuntivo/genética , Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Miopia/genética , Neoplasias/genética , Descolamento Retiniano/genética , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Artrite/enzimologia , Artrite/patologia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Doenças do Tecido Conjuntivo/enzimologia , Doenças do Tecido Conjuntivo/patologia , Elastina/química , Elastina/genética , Elastina/metabolismo , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/química , Matriz Extracelular/enzimologia , Regulação da Expressão Gênica , Perda Auditiva Neurossensorial/enzimologia , Perda Auditiva Neurossensorial/patologia , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Miopia/enzimologia , Miopia/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Especificidade de Órgãos , Descolamento Retiniano/enzimologia , Descolamento Retiniano/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 143: 106340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129176

RESUMO

Phospholipase A2s (PLA2) play a key role in generation of eicosanoids. Cytosolic PLA2α (cPLA2α) is constitutively expressed in most cells, whereas IIA secreted PLA2 (sPLA2-IIA) is induced during inflammation and is present at high levels in the synovial fluid of rheumatoid arthritis patients. In mice, both cPLA2α and sPLA2-IIA have been implicated in autoimmune arthritis; however, the respective contribution of these two enzymes to the pathogenesis and production of eicosanoids is unknown. We evaluated the respective role of cPLA2α and sPLA2-IIA with regard to arthritis and eicosanoid profile in an in vivo model of arthritis. While arthritis was most severe in mice expressing both enzymes, it was abolished when both cPLA2α and sPLA2-IIA were lacking. cPLA2α played a dominant role in the severity of arthritis, although sPLA2-IIA sufficed to significantly contribute to the disease. Several eicosanoids were modulated during the course of arthritis and numerous species involved sPLA2-IIA expression. This study confirms the critical role of PLA2s in arthritis and unveils the distinct contribution of cPLA2α and sPLA2-IIA to the eicosanoid profile in arthritis.


Assuntos
Artrite/metabolismo , Eicosanoides/biossíntese , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Animais , Artrite/enzimologia , Feminino , Regulação Enzimológica da Expressão Gênica , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo IV/genética , Inflamação/enzimologia , Lipidômica , Camundongos
9.
Thromb Haemost ; 117(10): 1859-1867, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771279

RESUMO

Increased intracellular reactive oxygen species (ROS) promote platelet activation. The sources of platelet-derived ROS are diverse and whether or not mitochondrial derived ROS, modulates platelet function is incompletely understood. Studies of platelets from patients with sickle cell disease, and diabetes suggest a correlation between mitochondrial ROS and platelet dysfunction. Therefore, we generated mice with a platelet specific knockout of superoxide dismutase 2 (SOD2-KO) to determine if increased mitochondrial ROS increases platelet activation. SOD2-KO platelets demonstrated decreased SOD2 activity and increased mitochondrial ROS, however total platelet ROS was unchanged. Mitochondrial function and content were maintained in non-stimulated platelets. However SOD2-KO platelets demonstrated decreased mitochondrial function following thrombin stimulation. In vitro platelet activation and spreading was normal and in vivo, deletion of SOD2 did not change tail-bleeding or arterial thrombosis indices. In pathophysiological models mediated by platelet-dependent immune mechanisms such as sepsis and autoimmune inflammatory arthritis, SOD2-KO mice were phenotypically identical to wildtype controls. These data demonstrate that increased mitochondrial ROS does not result in platelet dysfunction.


Assuntos
Plaquetas/enzimologia , Superóxido Dismutase/sangue , Animais , Artrite/sangue , Artrite/enzimologia , Artrite/genética , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Modelos Animais de Doenças , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Fenótipo , Ativação Plaquetária , Espécies Reativas de Oxigênio/sangue , Sepse/sangue , Sepse/enzimologia , Sepse/genética , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Trombina/farmacologia , Trombose/sangue , Trombose/enzimologia , Trombose/genética , Fatores de Tempo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 1940-1951, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28456643

RESUMO

The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Artrite/enzimologia , Catepsina K/metabolismo , Infecções/enzimologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Animais , Humanos
11.
Adv Gerontol ; 30(6): 868-872, 2017.
Artigo em Russo | MEDLINE | ID: mdl-29608831

RESUMO

It was studied the frequency of cells with cytogenetic abnormalities in the synovial fluid cells of the knee joint in patients of different age groups suffering from chronic arthritis associated with Lyme borreliosis (CAALB) or post-traumatic arthritis (PTA), depending on the polymorphism of the GSTM1 gene of glutathione-S-transferase. The study included 135 residents of the north of the Tomsk and Tyumen regions, 68 of whom suffered from CAALB, and the rest of the 67 patients who made up the control group were diagnosed with PTA. The results of this study have demonstrated that there are significant age-related differences in the frequency of cytogenetic abnormalities of the synovial fluid cells of the knee joint between young and elderly patients of СAALB. The integrative assessment of clinical and cytogenetic parameters in the group of elderly СAALB patients with mutant GSTM1 (0/0) allele, as compared with the other groups, enable to conclude that there are significant positive correlations between the indices of the severity disruption of articular locomotor function and the frequency of synovial fluid cells with trisomy of chromosome 7.


Assuntos
Artrite/enzimologia , Aberrações Cromossômicas , Glutationa Transferase/genética , Articulação do Joelho , Polimorfismo Genético , Líquido Sinovial/citologia , Membrana Sinovial/citologia , Fatores Etários , Idoso , Artrite/genética , Artrite/microbiologia , Artrite/patologia , Humanos , Doença de Lyme/complicações , Sibéria , Líquido Sinovial/enzimologia
12.
Clin Appl Thromb Hemost ; 22(5): 441-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27052781

RESUMO

An imbalance of matrix metalloproteinases (MMPs) and their inhibitors is thought to play a major role in the pathophysiology of joint diseases. The aim of this study is to provide additional insights into the relevance of MMP levels in arthroplasty patients in relation to inflammation and thrombosis. Deidentified plasma samples from 100 patients undergoing total hip arthroplasty or total knee arthroplasty were collected preoperatively, on postoperative day 1, and on postoperative day 3. Tissue inhibitor of MMP 4, tumor necrosis factor α (TNF-α), pro-MMP1, MMP3, MMP9, MMP13, and d-dimer were measured using enzyme-linked immunosorbent assay kits. A biochip array was used to profile interleukin (IL) 2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma, TNF-α, IL-1α, IL-1ß, monocyte chemoattractant protein 1, and endothelial growth factor (EGF) levels. The levels of MMP1, MMP9, MMP13, and TNF-α were elevated preoperatively in arthroplasty patients when compared to healthy individuals. The concentrations of MMP1 and MMP9 increased slightly in postsurgical samples. d-Dimer levels were elevated preoperatively, increased postoperatively, and started decreasing on postoperative day 3. Significant correlations between MMP9 with TNF-α, IL-6, IL-8, VEGF, and EGF were identified. Elevated preoperative MMP1, MMP9, and MMP13 concentrations suggest that they may play a role in the pathogenesis of arthritis. There is also evidence of increased coagulation activity and possible upregulation of several MMPs postsurgically. Correlation analysis indicates that MMP9 levels may potentially be related to inflammation and thrombosis in arthroplasty patients.


Assuntos
Artrite/sangue , Artroplastia , Metaloendopeptidases/sangue , Adulto , Artrite/enzimologia , Artrite/cirurgia , Estudos de Casos e Controles , Citocinas/sangue , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/sangue , Inflamação/enzimologia , Estudos Longitudinais , Masculino , Metaloproteinase 9 da Matriz/sangue , Período Perioperatório , Trombose/sangue , Trombose/enzimologia
13.
Arthritis Rheumatol ; 68(8): 1856-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26945549

RESUMO

OBJECTIVE: Bruton's tyrosine kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK inhibitors prevent autoimmune arthritis but have off-target effects, and the mechanisms of protection remain unknown. We undertook these studies using genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. METHODS: BTK-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum-transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. RESULTS: BTK deficiency conferred disease protection to K/BxN mice, confirming outcomes of BTK inhibitors. B lymphocytes were profoundly reduced, more than in other models of BTK deficiency. Subset analysis revealed loss of B cells at all developmental stages. Germinal center B cells were also decreased, with downstream effects on numbers of follicular helper T cells and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, BTK deficiency had no effect in the serum-transfer model of arthritis. CONCLUSION: BTK contributes to autoimmune arthritis primarily through its role in B cell signaling and not through innate immune components.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Artrite/enzimologia , Artrite/imunologia , Doenças Autoimunes/enzimologia , Doenças Autoimunes/etiologia , Proteínas Tirosina Quinases/deficiência , Tirosina Quinase da Agamaglobulinemia , Animais , Masculino , Camundongos
14.
J Vet Med Sci ; 78(6): 1051-4, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26902805

RESUMO

The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes.


Assuntos
Doenças do Cão/enzimologia , Artropatias/veterinária , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Líquido Sinovial/enzimologia , Animais , Artrite/enzimologia , Artrite/veterinária , Artrite Reumatoide/enzimologia , Artrite Reumatoide/veterinária , Estudos de Casos e Controles , Cães/lesões , Feminino , Artropatias/enzimologia , Articulações/lesões , Masculino
15.
Acta Clin Croat ; 54(2): 236-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26415324

RESUMO

The heterogeneity of rheumatoid arthritis (RA) presentation and molecular signature of RA subclasses in patients with early changes of small peripheral joints still remains a challenging problem. In clinical setting, classification of the disease subtypes is not possible and treatment adjustment is based on the continuous Disease Activity Score for disease severity recognition. A new approach in the treatment appears with the novel non biologic targeted synthetic disease-modifying antirheumatic drugs from the group of Janus kinase 1 and 3 (JAKI and JAK3), blocking interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21. We report a case of a 48-year-old patient who had suffered from polyarthritis from his age 40. Initial laboratory tests showed low inflammatory parameters and magnetic resonance imaging of both hands indicated an early stage of RA. Methylprednisolone and methotrexate therapy was initiated. The patient underwent additional tests, but there was not sufficient evidence for a precise diagnosis. According to the European League Against Rheumatism/American College of Rheumatology score-based algorithm, the patient was classified as seronegative RA based on joint involvement, duration of the disease, and synovitis not better explained by another disease. A partial clinical effect of the administered therapy (steroids as monotherapy and in combination, methotrexate and leflunomide) was noticed with the use of systemic steroids, but dramatic improvement was only achieved with a JAK inhibitor targeted therapy. Although the use of anti TNF-α blocker is a proposed procedure and the drug has not yet been registered in Europe, we took the opportunity to apply this new medication option. The patient, a construction worker, was treated for 20 months, which led to complete remission of the disease, without the need of basic or corticosteroid therapy. Full functional capacity necessary in his demanding job was also achieved. This result raised a question of timely introduction of immunomodulators in the polyarthritis treatment steps.


Assuntos
Artrite/tratamento farmacológico , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Artrite/enzimologia , Seguimentos , Humanos , Janus Quinases/sangue , Masculino , Pessoa de Meia-Idade , Indução de Remissão
16.
BMB Rep ; 48(7): 407-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25887750

RESUMO

The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1ß (IL-1ß)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1ß-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression.


Assuntos
Artrite/enzimologia , Artrite/patologia , Cartilagem Articular/patologia , Condrócitos/enzimologia , Cisteamina/análogos & derivados , Metaloproteinase 13 da Matriz/metabolismo , Peptídeos/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Artrite/induzido quimicamente , Artrite/complicações , Carragenina , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Cisteamina/farmacologia , Modelos Animais de Doenças , Edema/complicações , Edema/tratamento farmacológico , Edema/patologia , Humanos , Interleucina-1beta/farmacologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução Genética
17.
Matrix Biol ; 44-46: 207-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794647

RESUMO

Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.


Assuntos
Regulação Enzimológica da Expressão Gênica , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Animais , Artrite/enzimologia , Membrana Celular/enzimologia , Humanos , Metaloproteinases da Matriz Associadas à Membrana/química , Neoplasias/enzimologia
18.
Arthritis Res Ther ; 16(5): 464, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25280866

RESUMO

INTRODUCTION: Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invasion in other cells and the potential clinical availability of FAK inhibitors, it is important to determine if FAK contributes to synovial fibroblast invasion and inflammatory arthritis. METHODS: After treatment with FAK inhibitors, invasiveness of human rheumatoid synovial fibroblasts was determined with Matrigel invasion chambers. Migration and focal matrix degradation, two components of cellular invasion, were assessed in FAK-inhibited rheumatoid synovial fibroblasts by transwell assay and microscopic examination of fluorescent gelatin degradation, respectively. Using mice with tumor necrosis factor α (TNFα)-induced arthritis in which fak could be inducibly deleted, invasion and migration by FAK-deficient murine arthritic synovial fibroblasts were determined as described above and arthritis was clinically and pathologically scored in FAK-deficient mice. RESULTS: Inhibition of FAK in human rheumatoid synovial fibroblasts impaired cellular invasion and migration. Focal matrix degradation occurred both centrally and at focal adhesions, the latter being a novel site for matrix degradation in synovial fibroblasts, but degradation was unaltered with FAK inhibitors. Loss of FAK reduced invasion in murine arthritic synovial fibroblasts, but not migration or TNFα-induced arthritis severity and joint erosions. CONCLUSIONS: FAK inhibitors reduce synovial fibroblast invasion and migration, but synovial fibroblast migration and TNFα-induced arthritis do not rely on FAK itself. Thus, inhibition of FAK alone is unlikely to be sufficient to treat inflammatory arthritis, but current drugs that inhibit FAK may inhibit multiple factors, which could increase their efficacy in rheumatoid arthritis.


Assuntos
Artrite/enzimologia , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite/genética , Artrite/patologia , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Western Blotting , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Indóis/farmacologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Quinolonas/farmacologia , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Membrana Sinovial/patologia , Fatores de Tempo
19.
Mediators Inflamm ; 2014: 649718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876675

RESUMO

ADAMTS-12 is a member of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases, which were known to play important roles in various biological and pathological processes, such as development, angiogenesis, inflammation, cancer, arthritis, and atherosclerosis. In this review, we briefly summarize the structural organization of ADAMTS-12; concentrate on the emerging role of ADAMTS-12 in several pathophysiological conditions, including intervertebral disc degeneration, tumorigenesis and angioinhibitory effects, pediatric stroke, gonad differentiation, trophoblast invasion, and genetic linkage to schizophrenia and asthma, with special focus on its role in arthritis and inflammation; and end with the perspective research of ADAMTS-12 and its potential as a promising diagnostic and therapeutic target in various kinds of diseases and conditions.


Assuntos
Proteínas ADAM/fisiologia , Artrite/enzimologia , Regulação Enzimológica da Expressão Gênica , Inflamação/enzimologia , Metaloproteases/fisiologia , Proteínas ADAMTS , Animais , Artrite Reumatoide/enzimologia , Gônadas/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoartrite/enzimologia , Estrutura Terciária de Proteína , Esquizofrenia/enzimologia , Trofoblastos/patologia
20.
PLoS One ; 7(12): e51215, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251456

RESUMO

OBJECTIVE: Invariant natural killer T (iNKT) cells regulate collagen-induced arthritis (CIA) when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer). Glucose-6-phosphate isomerase (GPI)-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339) can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. METHODS: Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO) or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs) by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. RESULTS: α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b) and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. CONCLUSION: α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.


Assuntos
Artrite/etiologia , Linfócitos T CD4-Positivos/metabolismo , Galactosilceramidas/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Glicolipídeos/metabolismo , Células Matadoras Naturais/imunologia , Animais , Artrite/enzimologia , Artrite/metabolismo , Citocinas/sangue , Ligantes , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos DBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA