Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
Biomed Pharmacother ; 174: 116515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569276

RESUMO

Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.


Assuntos
Artrite Experimental , Microbioma Gastrointestinal , Ginsenosídeos , Células-Tronco Mesenquimais , Animais , Humanos , Masculino , Ratos , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/microbiologia , Artrite Experimental/terapia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/microbiologia , Artrite Reumatoide/terapia , Exossomos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical , Colágeno/metabolismo , Colágeno/farmacologia
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542216

RESUMO

Dysregulation of the gut microbiota and their metabolites is involved in the pathogenic process of intestinal diseases, and several pieces of evidence within the current literature have also highlighted a possible connection between the gut microbiota and the unfolding of inflammatory pathologies of the joints. This dysregulation is defined as the "gut-joint axis" and is based on the joint-gut interaction. It is widely recognized that the microbiota of the gut produce a variety of compounds, including enzymes, short-chain fatty acids, and metabolites. As a consequence, these proinflammatory compounds that bacteria produce, such as that of lipopolysaccharide, move from the "leaky gut" to the bloodstream, thereby leading to systemic inflammation which then reaches the joints, with consequences such as osteoarthritis, rheumatoid arthritis, and spondylarthritis. In this state-of-the-art research, the authors describe the connections between gut dysbiosis and osteoarthritis, rheumatoid arthritis, and spondylarthritis. Moreover, the diagnostic tools, outcome measures, and treatment options are elucidated. There is accumulating proof suggesting that the microbiota of the gut play an important part not only in immune-mediated, metabolic, and neurological illnesses but also in inflammatory joints. According to the authors, future studies should concentrate on developing innovative microbiota-targeted treatments and their effects on joint pathology as well as on organizing screening protocols to predict the onset of inflammatory joint disease based on gut dysbiosis.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Osteoartrite , Espondilartrite , Humanos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Artrite Reumatoide/microbiologia
3.
APMIS ; 132(6): 382-415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469726

RESUMO

Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.


Assuntos
Artrite Reumatoide , Biomarcadores , Disbiose , Microbioma Gastrointestinal , Humanos , Artrite Reumatoide/microbiologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Disbiose/microbiologia , Animais , Ácidos Graxos Voláteis/metabolismo
5.
Front Cell Infect Microbiol ; 12: 956417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923803

RESUMO

Rheumatoid arthritis (RA) is a systematical autoimmune disease, characterized by chronic synovial joint inflammation and hurt. Porphyromonas gingivalis(P. gingivalis) can cause life-threatening inflammatory immune responses in humans when the host pathogenic clearance machinery is disordered. Some epidemiological studies have reported that P. gingivalis exposure would increase the prevalence of RA. However, the results remain inconsistent. Therefore, a meta-analysis was done to systematically analyze the relationship between P. gingivalis exposure and the prevalence of rheumatoid arthritis. Database including Cochrane Library, Web of Science, PubMed, and EMBASE were searched for published epidemiological articles assessed the relationship between P. gingivalis and RA. Obtained studies were screened based on the predefined inclusion and exclusion criteria. The overall Odds Ratios (ORs) of incorporated articles were pooled by random-effect model with STATA 15.1 software. The literature search returned a total of 2057 studies. After exclusion, 28 articles were included and analyzed. The pooled ORs showed a significant increase in the risk of RA in individuals with P. gingivalis exposure (OR = 1.86; 95% CI: 1.43-2.43). Subgroup analysis revealed that pooled ORs from populations located in Europe (OR = 2.17; 95% CI: 1.46-3.22) and North America (OR = 2.50; 95% CI: 1.23-5.08) were significantly higher than that from population in Asia (OR = 1.11; 95% CI: 1.03-1.20). Substantial heterogeneity was observed but did not significantly influence the overall outcome. In conclusion, our results indicated P. gingivalis exposure was a risk factor in RA. Prompt diagnosis and management decisions on P. gingivalis antimicrobial therapy would prevent rheumatoid arthritis development and progression.


Assuntos
Artrite Reumatoide , Porphyromonas gingivalis , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/microbiologia , Humanos , Prevalência
6.
J Immunol Res ; 2022: 6839356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224112

RESUMO

Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman's correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (p < 0.001), C-reactive protein (p < 0.001), matrix metalloproteinase-3 (p < 0.001), and IL-6 (p = 0.001), and were inversely correlated with hemoglobin (p = 0.005). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (p = 0.002) and painVAS (p < 0.001). Total bacteria counts were correlated with ENC (p < 0.001), and inversely correlated with serum LPS (p < 0.001) and anti-Pg-LPS IgA antibody levels (p < 0.001). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.


Assuntos
Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/microbiologia , Disbiose/microbiologia , Boca/microbiologia , Porphyromonas gingivalis/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Carga Bacteriana , Infecções por Bacteroidaceae/imunologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Estudos Transversais , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal , Humanos , Imunoglobulina A/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade
7.
Toxins (Basel) ; 14(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35051027

RESUMO

Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host's immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Artrite Reumatoide/microbiologia , Infecções por Pasteurellaceae/microbiologia , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Exotoxinas/imunologia , Humanos , Infecções por Pasteurellaceae/imunologia , Infecções por Pasteurellaceae/patologia
8.
Nutrients ; 14(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057535

RESUMO

BACKGROUND: We aimed to provide a systematic review and meta-analysis of randomized controlled trials assessing the effect of probiotics supplementation on symptoms and disease activity in patients with chronic inflammatory rheumatic diseases (rheumatoid arthritis (RA), spondylarthritis (SpA), or psoriatic arthritis). METHODS: A systematic literature review and meta-analysis from RA and SpA randomized controlled trials were conducted searching for articles in MEDLINE/PubMed and abstracts from recent international rheumatology meetings. The control group was a placebo or another dietary intervention. The risk of bias of the selected studies was evaluated using the Cochrane Collaboration tool and the Jadad scale. RESULTS: The initial search yielded 173 articles. Of these, 13 studies were included in the qualitative synthesis, 8 concerning a total of 344 RA patients and 2 concerning a total of 197 SpA patients. Three meta-analyses were also analyzed. Probiotic strains and quantities used were different among trials (5 studies using Lactobacillus sp., 1 trial Bacillus coagulans and the others a mix of different probiotic strains). Time to assess response ranged from 8 weeks to one year. Two studies associated probiotic supplementation with a dietary intervention. Meta-analysis showed a statistically significant decrease of C-reactive protein (CRP) concentration (mean difference (MD)) -3.04 (95% CI -4.47, -1.62) mg/L, p < 0.001; I2 = 20%, n patients = 209) with probiotics in RA. However, after excluding high-risk-of-bias trials of meta-analysis, there was no difference between probiotics and placebo on DAS28 (standard MD -0.54; 95% CI -1.94 to 0.85, p = 0.45, I2 93%, n patients = 143). The two studies on SpA patients showed no efficacy of probiotics. CONCLUSIONS: Probiotic supplementation might decrease RA activity with a moderate decrease effect on CRP, but lack of evidence and studies' heterogeneity do not allow us to propose them to patients with inflammatory arthritis to control their disease. Further RCTs are required in the future to determinate the efficacy of probiotics and the optimal administration design.


Assuntos
Artrite Reumatoide/microbiologia , Artrite Reumatoide/terapia , Probióticos/uso terapêutico , Espondilartrite/microbiologia , Espondilartrite/terapia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
9.
Artigo em Inglês | MEDLINE | ID: mdl-34998201

RESUMO

Yaobitong capsule (YBTC), a Chinese medicine compound preparation, has been demonstrated to affect multiple pathways associated with inflammation and exhibit potential anti-arthritis effect. In this study, an integrated omic approach based on UHPLC-Q-TOF MS and 16S rRNA sequencing analyses was proposed to reveal the anti-arthritis effect and possible mechanism of YBTC. The AIA rat model showed that YBTC significantly alleviated the typical symptoms of AIA rats such as weight, spleen index and pro-inflammatory cytokines. Fecal metabolomics results identified 41 differential metabolites, which mainly referred to tryptophan, bile acid and fatty acid metabolism. The gut microbiota played a crucially important role in anti-inflammatory immunity, 16S rRNA results indicated that YBTC changed the community structure and alleviated the microecological imbalance caused by rheumatoid arthritis (RA). Further ROC curve analysis demonstrated that it was reliable to identify RA by using 5 metabolites and 3 microorganisms (AUC > 0.83). In summary, it was the first time that the preventive effect of YBTC in RA was confirmed. The secretion of the microbiota-mediated metabolites was significantly improved by YBTC, through its callback effect on the disturbed gut microbiota. Thus, we have indicated a potential novel strategy for the prevention of RA via evaluation of intervention effects of YBTC on AIA rat model.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/microbiologia , Medicamentos de Ervas Chinesas/administração & dosagem , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Artrite Reumatoide/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Masculino , Metabolômica , Microbiota/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Probiotics Antimicrob Proteins ; 14(1): 99-113, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34036479

RESUMO

Microbiota is a balanced ecosystem that has important functions to the host health including development, defense, digestion, and absorption of dietary fibers and minerals, vitamin synthesizes, protection, and training the host immune system. On the other hand, its dysbiosis is linked to many human diseases such as rheumatoid arthritis (RA). The RA is an inflammatory autoimmune disorder caused by genetic and environmental factors; microbiota may be considered as a risk environmental factor for it. Citrullination is a post-translation modification (PMT) that converts the amino acid arginine to amino acid citrulline in certain proteins. These citrullinated proteins are recognized as a foreign antigen by the immune system resulting in the upregulation of inflammatory action such as in RA. The current work highlights the effect of both gut and oral microbiota dysbiosis on the development of RA, as well as discusses how the alteration in microbiota composition leads to the overgrowth of some bacterial species that entangled in RA pathogenicity. The evidence suggested that some oral and gut microbial species such as Porphyromonas gingivalis and Prevotella copri, respectively, contribute to RA pathogenesis. During dysbiosis, these bacteria can mediate the citrullination of either human or bacteria proteins to trigger an immune response that leads to the generation of autoantibodies.


Assuntos
Artrite Reumatoide , Microbiota , Periodontite , Artrite Reumatoide/microbiologia , Citrulinação , Humanos , Periodontite/microbiologia , Porphyromonas gingivalis/genética
11.
Front Immunol ; 12: 704089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721377

RESUMO

Several studies have investigated the causative role of the microbiome in the development of rheumatoid arthritis (RA), but changes in the gut microbiome in RA patients during drug treatment have been less well studied. Here, we tracked the longitudinal changes in gut bacteria in 22 RA patients who were randomized into two groups and treated with Huayu-Qiangshen-Tongbi formula (HQT) plus methotrexate (MTX) or leflunomide (LEF) plus MTX. There were differences in the gut microbiome between untreated (at baseline) RA patients and healthy controls, with 37 species being more abundant in the RA patients and 21 species (including Clostridium celatum) being less abundant. Regarding the functional analysis, vitamin K2 biosynthesis was associated with RA-enriched bacteria. Additionally, in RA patients, alterations in gut microbial species appeared to be associated with RA-related clinical indicators through changing various gut microbiome functional pathways. The clinical efficacy of the two treatments was further observed to be similar, but the response trends of RA-related clinical indices in the two treatment groups differed. For example, HQT treatment affected the erythrocyte sedimentation rate (ESR), while LEF treatment affected the C-reactive protein (CRP) level. Further, 11 species and 9 metabolic pathways significantly changed over time in the HQT group (including C. celatum, which increased), while only 4 species and 2 metabolic pathways significantly changed over time in the LEF group. In summary, we studied the alterations in the gut microbiome of RA patients being treated with HQT or LEF. The results provide useful information on the role of the gut microbiota in the pathogenesis of RA, and they also provide potentially effective directions for developing new RA treatments.


Assuntos
Artrite Reumatoide , Clostridium/imunologia , Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal , Leflunomida/administração & dosagem , Metotrexato/administração & dosagem , Adulto , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
12.
Nutrients ; 13(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34684377

RESUMO

Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.


Assuntos
Artrite Reumatoide/terapia , Probióticos/uso terapêutico , Artrite Reumatoide/microbiologia , Microbioma Gastrointestinal , Humanos , Inflamação/tratamento farmacológico , Resultado do Tratamento
13.
Aging (Albany NY) ; 13(20): 23689-23701, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670873

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease described by joint destruction, synovitis and pannus formation. The gut microbiota acts as an environmental factor that plays an important role in RA, but little research regarding the etiopathogenic mechanisms of the microbiome in RA has been carried out. We used an integrated approach of 16S rRNA gene sequencing and ultrahigh-performance liquid chromatography-mass spectrometry-based metabolomics to analyze the structure and diversity of the intestinal flora and metabolites of the gut microbiota in RA patients compared with healthy subjects. In this study, α-diversity analysis of the gut microbiota showed that there was no significant difference between the healthy control (HC) and RA groups. However, ß-diversity analysis showed that there was a significant difference between the two groups. Further analysis of alteration of the gut microbiota revealed that at the phylum level, the relative abundance of p_Bacteroidetes was significantly decreased in the RA group, while that of Verrucomicrobia and Proteobacteria was significantly increased in the RA group. At the genus level, Bacteroides, Faecalibacterium and some probiotics were decreased in the RA group, while 97 genera, including Lactobacillus, Streptococcus and Akkermansia, were increased in the RA group. Seventy-four differentially abundant metabolites were identified between the HC and RA groups, and we identified two potential biomarkers (9,12-octadecadiynoic acid and 10Z-nonadecenoic acid) in RA.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal/genética , Metaboloma , Adulto , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/microbiologia , Biomarcadores , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
14.
Sci Rep ; 11(1): 18013, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504225

RESUMO

To investigate associations between isoniazid for latent tuberculosis and risk of severe hepatitis, affecting patients with rheumatoid arthritis or ankylosing spondylitis whose treatment includes tumor necrosis factor inhibitors. Our self-controlled case series study analyzed Taiwan's National Health Insurance Database from 2003 to 2015 to identify RA or AS patients, aged ≥ 20 years, receiving TNF inhibitors and a 9-month single isoniazid treatment. The outcome of interest was hospitalization due to severe hepatitis. We defined risk periods by isoniazid exposure (days): 1-28, 29-56, 57-84, 85-168, 169-252, and 253-280. To compare risk of severe hepatitis in exposed and non-exposed periods, we performed conditional Poisson regressions to generate incidence rate ratios (IRR) and 95% confidence intervals, with adjustment of patients' baseline covariates including age, sex, HBV, HCV and related medication. Of 54,267 RA patients and 137,889 AS patients identified between 2000 and 2015, 11,221 (20.7%) RA and 4,208 (3.1%) AS patients underwent TNFi therapy, with 722 (5%) receiving isoniazid for latent tuberculosis. We identified 31 incident cases (4.3%) of hospitalization due to severe hepatitis. Of these hospitalization events, 5 occurred in the exposed periods, 25 occurred in the INH unexposed periods, and 1 occurred in the pre-exposure period. Compared with non-exposure, the risk of severe hepatitis was higher in exposed periods (incidence rate ratio [IRR]: 5.1, 95% CI: 1.57-16.55), especially 57-84 days (IRR: 17.29, 95% CI: 3.11-96.25) and 85-168 days (IRR:10.55, 95% CI: 1.90-58.51). The INH related fatal hepatotoxicity was not identified in our study. Our findings suggest an association between risk of severe hepatitis and exposure to isoniazid in patients with RA or AS under TNFi therapy, particularly within the exposed period 57-168 days. A close monitoring of liver function is mandatory to minimize the risk, especially within the first 6 months after initiation of 9 months isoniazid.


Assuntos
Antituberculosos/efeitos adversos , Artrite Reumatoide/prevenção & controle , Hepatite/diagnóstico , Isoniazida/efeitos adversos , Tuberculose Latente/prevenção & controle , Espondilite Anquilosante/prevenção & controle , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adulto , Idoso , Antituberculosos/administração & dosagem , Artrite Reumatoide/complicações , Artrite Reumatoide/microbiologia , Feminino , Hepatite/etiologia , Hepatite/patologia , Hospitalização/estatística & dados numéricos , Humanos , Isoniazida/administração & dosagem , Tuberculose Latente/complicações , Tuberculose Latente/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Profilaxia Pós-Exposição/métodos , Medição de Risco , Índice de Gravidade de Doença , Espondilite Anquilosante/complicações , Espondilite Anquilosante/microbiologia
15.
J Immunol Res ; 2021: 8167283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195296

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that is immune mediated. Patients typically present with synovial inflammation, which gradually deteriorates to investigate severe cartilage and bone damage, affecting an individual's ability to perform basic tasks and impairing the quality of life. When evaluated against healthy controls, patients with RA have notable variations within the constituents of the gut microbiota. The human gastrointestinal tract mucosa is colonized by trillions of commensal microbacteria, which are key actors in the initiation, upkeep, and operation of the host immune system. Gut microbiota dysbiosis can adversely influence the immune system both locally and throughout the host, thus predisposing the host to a number of pathologies, including RA. Proximal intestinal immunomodulatory cells, situated in specific locales within the intestine, are a promising intermediary through which the gastrointestinal microbiota can influence the pathogenesis and progression of RA. In the early stages of the disease, the microbiota appear to differ from those present in healthy controls. This difference may reflect potential autoimmune mechanisms. Research studies evaluating intestinal microbiota have demonstrated that RA is associated with a bacterial population growth or with a decline when judged against control groups. The aim of this review is to examine the studies that connect intestinal dysbiosis with the autoimmune pathways implicated in the pathogenesis of RA.


Assuntos
Artrite Reumatoide/microbiologia , Disbiose/imunologia , Mucosa Intestinal/imunologia , Intestinos/microbiologia , Animais , Artrite Reumatoide/imunologia , Homeostase , Humanos , Imunidade , Intestinos/imunologia
16.
PLoS One ; 16(6): e0253918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185818

RESUMO

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)-a painful condition characterized by the chronic inflammation of joints-comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T/imunologia , Artrite Reumatoide/microbiologia , Autoantígenos/genética , Autoantígenos/imunologia , Doenças Autoimunes/microbiologia , Doenças Autoimunes/patologia , Autoimunidade/genética , Autoimunidade/imunologia , Epitopos de Linfócito T/genética , Feminino , Humanos , Leucócitos Mononucleares/microbiologia , Masculino , Linfócitos T/microbiologia , Linfócitos T/patologia
17.
Arthritis Rheumatol ; 73(11): 1986-1993, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33949151

RESUMO

OBJECTIVE: It has been suggested that rheumatoid arthritis (RA) may originate at the oral mucosa. The aim of the present study was to assess the oral microbiome and periodontal condition in patients with early RA and individuals at risk of developing RA compared to healthy controls. METHODS: Three groups were recruited (n = 50 participants per group): 1) patients with early RA (meeting the American College of Rheumatology/European Alliance of Associations for Rheumatology 2010 classification criteria), 2) individuals at risk of developing RA (those with arthralgia who were positive for RA-associated autoantibodies), and 3) healthy controls. A periodontal examination was conducted to assess the presence of bleeding on probing (BOP), pocket probing depth (PPD), and periodontal inflamed surface area (PISA). The microbial composition of subgingival dental plaque, saliva, and tongue coating was assessed using 16S ribosomal DNA amplicon sequencing, and findings were compared between groups with permutational multivariate analysis of variance (PERMANOVA). RESULTS: There were no significant differences in any of the 3 periodontal variables between patients with early RA, at-risk individuals, and healthy controls (P = 0.70 for BOP, P = 0.30 for PPD, and P = 0.57 for PISA, by Kruskal-Wallis test). PERMANOVA analyses comparing microbial composition between the groups showed significant differences in the microbial composition of saliva (F = 2.08, P = 0.0002) and tongue coating (F = 2.04, P = 0.008), but not subgingival dental plaque (F = 0.948, P = 0.51). However, in post hoc tests, no significant differences in microbial composition of the saliva or tongue coating were observed between the early RA group and the at-risk group (F = 1.12, P = 0.28 for saliva; F = 0.834, P = 0.59 for tongue coating). In assessing microbial diversity based on the number of zero-radius operational taxonomic units per sample, Prevotella in the saliva and Veillonella in the saliva and tongue coating were each found at a higher relative abundance in samples from patients with early RA and at-risk individuals compared to healthy controls. CONCLUSION: The results show similarities in the oral microbiome between patients with early RA and at-risk individuals, since in both groups, the oral microbiome was characterized by an increased relative abundance of potentially proinflammatory species when compared to that in healthy controls. These findings suggest a possible association between the oral microbiome and the onset of RA.


Assuntos
Artrite Reumatoide/microbiologia , Autoanticorpos , Microbiota , Boca/microbiologia , Doenças Periodontais/microbiologia , Adulto , Artrite Reumatoide/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saúde Bucal , Doenças Periodontais/complicações , Risco , Saliva/microbiologia
18.
J Leukoc Biol ; 110(3): 461-473, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34057740

RESUMO

Periodontitis induced by bacteria especially Porphyromonas gingivalis (P. gingivalis) is the most prevalent microbial disease worldwide and is a significant risk factor for systemic diseases such as rheumatoid arthritis (RA). RA and periodontitis share similar clinical and pathologic features. Moreover, the prevalence of RA is much higher in patients with periodontitis than in those without periodontitis. To explore the immunologic mechanism of periodontitis involved in RA, we established a mouse model of periodontitis and then induced RA. According to the results of paw thickness, arthritis clinical score, arthritis incidence, microscopic lesion using H&E staining, and micro-CT analysis, periodontitis induced by P. gingivalis promoted the occurrence and development of collagen-induced arthritis (CIA) in mice. Furthermore, periodontitis enhanced the frequency of CD19+ B cells, Th17, Treg, gMDSCs, and mMDSCs, whereas down-regulated IL-10 producing regulatory B cells (B10) in CIA mice preinduced for periodontitis with P. gingivalis. In vitro stimulation with splenic cells revealed that P. gingivalis directly enhanced differentiation of Th17, Treg, and mMDSCs but inhibited the process of B cell differentiation into B10 cells. Considering that adoptive transfer of B10 cells prevent RA development, our study, although preliminary, suggests that down-regulation of B10 cells may be the key mechanism that periodontitis promotes RA as the other main immune suppressive cells such as Treg and MDSCs are up-regulated other than down-regulated in group of P. gingivalis plus CIA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Animais , Antígenos CD19/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/microbiologia , Artrite Reumatoide/diagnóstico por imagem , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/patologia , Camundongos , Células Supressoras Mieloides/metabolismo , Periodontite/diagnóstico por imagem , Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
19.
Rheumatol Int ; 41(9): 1567-1575, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33856544

RESUMO

The human microbiome has attracted attention for its potential utility in precision medicine. Increasingly, more researchers are recognizing changes in intestinal microbiome can upset the balance between pro- and anti-inflammatory factors of host immune system, potentially contributing to arthritis immunopathogenesis. Patients who develop rheumatoid arthritis from undifferentiated arthritis can face multiple irreversible joint lesions and even deformities. Strategies for identifying undifferentiated arthritis patients who have a tendency to develop rheumatoid arthritis and interventions to prevent rheumatoid arthritis development are urgently needed. Intestinal microbiome dysbiosis and shifts in the miRNA profile affect undifferentiated arthritis progression, and may play an important role in rheumatoid arthritis pathophysiologic process via stimulating inflammatory cytokines and disturbing host and microbial metabolic functions. However, a causal relationship between microbiome-miRNA interactions and rheumatoid arthritis development from undifferentiated arthritis has not been uncovered yet. Changes in the intestinal microbiome and miRNA profiles of undifferentiated arthritis patients with different disease outcomes should be studied together to uncover the role of the intestinal microbiome in rheumatoid arthritis development and to identify potential prognostic indicators of rheumatoid arthritis in undifferentiated arthritis patients. Herein, we discuss the possibility of microbiome-miRNA interactions contributing to rheumatoid arthritis development and describe the gaps in knowledge regarding their influence on undifferentiated arthritis prognosis that should be addressed by future studies.


Assuntos
Artrite Reumatoide/microbiologia , Disbiose/imunologia , MicroRNAs/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Progressão da Doença , Microbioma Gastrointestinal , Humanos
20.
Sci Rep ; 11(1): 9199, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911135

RESUMO

Methotrexate (MTX) impairs antibody response after pneumococcal vaccination. We aimed to investigate differences in phenotypes of circulating B and T cells after pneumococcal conjugate vaccine (PCV) in rheumatoid arthritis (RA) patients on MTX (MTX group), RA without disease-modifying drugs (0DMARD), and controls (HC). MTX group (n = 11), 0DMARD (n = 12) and HC (n = 13) were studied. Blood samples were collected: before MTX, ≥ 4 weeks on stable MTX dose (prevaccination), and 7 days postvaccination (MTX group), and pre- and 7 days postvaccination (0DMARD and HC). Phenotypes of B- and T cell subsets were determined using flow cytometry. Serotype-specific IgG were quantified using multiplex bead assay, pre- and 4-6 weeks postvaccination. Concentrations of plasmablasts and switched memory B cells increased after PCV in HC (both p = 0.03) and the 0DMARD group (p = 0.01 and p = 0.02), but not in the MTX group. Postimmunization plasmablasts were lower in MTX group, compared to the 0DMARD group and HC (p = 0.002 and p < 0.001). Th17 cells decreased after MTX start (p = 0.02), and increased in HC after immunization (p = 0.01). Postimmunization plasmablasts correlated with mean antibody response ratio in all RA patients (R = 0.57, p = 0.035). Methotrexate reduced Th17 cells and blocked activation of plasmablasts and switched memory B cells following polysaccharide-protein conjugate antigen challenge in RA.


Assuntos
Formação de Anticorpos/imunologia , Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Metotrexato/uso terapêutico , Vacinas Pneumocócicas/administração & dosagem , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antibacterianos/imunologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/microbiologia , Artrite Reumatoide/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA