RESUMO
The antifungal and antimycotoxigenic activities of the essential oils (EO) from Cuminum cyminum and Laurus nobilis, and their respective principal compounds, cuminaldehyde and 1,8-cineole, were evaluated against fungi of the genus Aspergillus: A. carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. The antifungal activity was determined by the contact method and the mycelial growth of the fungi was evaluated. Scanning electron microscopic (SEM) images were obtained to suggest modes of action of the compounds analysed. The antimycotoxigenic activity was determined by high-performance liquid chromatograph. Aspergillus carbonarius was completely inhibited by cumin EO (500 µl l-1), by laurel EO and by cuminaldehyde (5000 µl l-1). The cumin EO (500 µl l-1) completely inhibited the growth of A. niger. All the samples inhibited the mycelial growth of A. ochraceus, especially cumin EO and cuminaldehyde (250 µl l-1). Aspergillus westerdijkiae was completely inhibited by cumin EO and cuminaldehyde (1000 µl l-1), by laurel EO and 1,8-cineole (10 000 µl l-1). A decrease in the production of ochratoxin A (OTA) was observed post-treatment, except in A. ochraceus, only inhibited by laurel EO. SEM images showed morphological changes in fungal structures and spore inhibition post-treatment. The results confirmed the antifungal and antimycotoxigenic effect of EO and their principal constituents on fungi evaluated.
Assuntos
Antifúngicos , Aspergillus , Cuminum , Laurus , Testes de Sensibilidade Microbiana , Óleos Voláteis , Cuminum/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Laurus/química , Benzaldeídos/farmacologia , Eucaliptol/farmacologia , CimenosRESUMO
Soil and wastewater samples contaminated by petroleum-related industries were collected from various locations in Saudi Arabia, a country known for its vast oil reserves. The samples were analyzed for their physicochemical properties, including the presence of metals, petroleum hydrocarbons, and aromatic compounds. A total of 264 fungal isolates were analyzed and categorized into eight groups of Aspergillus (194 isolates) and four groups of Penicillium (70 isolates). The potential of these fungal groups to grow in oil or its derivatives was investigated. Two isolates, Aspergillus tubingensis FA-KSU5 and A. niger FU-KSU69, were utilized in two remediation experiments-one targeting wastewater and the other focusing on polluted soil. The FA-KSU5 strain demonstrated complete removal of Fe3+, As3+, Cr6+, Zn2+, Mn2+, Cu2+ and Cd2+, with bioremediation efficiency for petroleum hydrocarbons in the wastewater from these sites ranging between 90.80 and 98.58%. Additionally, the FU-KSU69 strain achieved up to 100% reduction of Co2+, Ba2+, B3+, V+, Ni2+, Pb2+ and Hg2+, with removal efficiency ranging from 93.17 to 96.02% for aromatic hydrocarbons after 180 min of wastewater treatment. After 21 days of soil incubation with Aspergillus tubingensis FA-KSU5, there was a 93.15% to 98.48% reduction in total petroleum hydrocarbons (TPHs) and an 88.11% to 97.31% decrease in polycyclic aromatic hydrocarbons (PAHs). This strain exhibited the highest removal rates for Cd2+ and As3+ followed by Fe3+, Zn2+, Cr6+, Se4+ and Cu2+. Aspergillus niger FU-KSU69 achieved a 90.37% to 94.90% reduction in TPHs and a 95.13% to 98.15% decrease in PAHs, with significant removal of Ni2+, Pb2+ and Hg2+, followed by Co2+, V+, Ba2+ and B3+. The enzymatic activity in the treated soils increased by 1.54- to 3.57-fold compared to the polluted soil. Although the mixture of wastewater and polluted soil exhibited high cytotoxicity against normal human cell lines, following mycoremediation, all treated soils and effluents with the dead fungal biomass showed no toxicity against normal human cell lines at concentrations up to 500 µL/mL, with IC50 values ≥ 1000 µL/mL. SEM and IR analysis revealed morphological and biochemical alterations in the biomass of A. tubingensis FA-KSU5 and A. niger FA-KSU69 when exposed to petroleum effluents. This study successfully introduces non-toxigenic and environmentally friendly fungal strains play a crucial role in the bioremediation of contaminated environments. Both strains serve as low-cost and effective adsorbents for bio-remediating petroleum wastewater and oil-contaminated soil. Heavy metals and hydrocarbons, the primary pollutants, were either completely removed or reduced to permissible levels according to international guidelines using the dead biomass of FA-KSU5 and FA-KSU69 fungi. Consequently, the environments associated with this globally significant industry are rendered biologically safe, particularly for humans, as evidenced by the absence of cytotoxicity in samples treated with A. tubingensis FA-KSU5 and A. niger FA-KSU69 on various human cell types.
Assuntos
Aspergillus , Biodegradação Ambiental , Petróleo , Microbiologia do Solo , Poluentes do Solo , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/classificação , Penicillium/metabolismo , Penicillium/isolamento & purificação , Arábia Saudita , Poluição por Petróleo , Fungos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Metais/metabolismo , Solo/química , Hidrocarbonetos/metabolismoRESUMO
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Assuntos
Proteínas Fúngicas , Fungos , Metabolismo Secundário , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fungos/metabolismo , Fungos/patogenicidade , Fungos/genética , Fungos/fisiologia , Virulência , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Morfogênese , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/genética , AnimaisRESUMO
Lovastatin has received interest for its potential therapeutic use in treating numerous diseases, for example, the blood cholesterol level by restraining hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The research utilized the fungal growth bioassay technique to disengage and evaluate filamentous organism for the lovastatin creation. The clever type of Aspergillus terreus (KF971363.1) was embraced for lovastatin creation by solid-state fermentation (SSF). Lovastatin production was optimized using physiological parameters such as pH and temperature at SSF. The addition of nitrogen source enhanced the production of lovastatin by the breakdown of lignocellulose that improved the production of lovastatin. The research verified a yeast growth inhibition bioassay approach, in addition to thin-layer chromatography and liquid chromatography-mass spectrometry (LC-MS). All of these techniques were used to confirm lovastatin production. The purified extract subjected to the TLC analysis showed retention factor (Rf) value of 0.73. Moreover, the inhibition bioassay method reassures the lovastatin production by comparing the zone of inhibition against C. albicans.
Assuntos
Antifúngicos , Aspergillus , Fermentação , Lovastatina , Lovastatina/biossíntese , Lovastatina/farmacologia , Aspergillus/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Cromatografia em Camada Fina , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Espectrometria de MassasRESUMO
Endophytic fungi have been shown to synthesize bioactive secondary metabolites, some of which promote plant growth through various mechanisms. In our previous study, endophytic fungi were isolated from mango trees (Mangifera indica L.). The present study examined fifty endophytic fungal isolates for mineral solubilization activity, ammonia production, and siderophore production. It was shown that these isolates could produce phytohormones indole-3-acetic acid and gibberellic acid, as well as inhibit plant pathogens, specifically Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The results showed that all the isolated fungal endophytes exhibited various activities. Based on the findings, two fungal endophytes-Aureobasidium pullulans CY.OS 13 and Aspergillus tamarii CY.OS 144-were selected for dual inoculation in chili plants under pot-scale conditions to investigate their potential to improve growth-related traits such as seed germination, shoot and root length, biomass, and chlorophyll content. Seed treated with A. pullulans CY.OS 13 and/or A. tamarii CY.OS 144 showed a significant (p < 0.05) increase in seed germination and growth parameters of chili plants grown under pot-scale conditions. Particularly, chili plants whose seeds were injected with a combination of the two selected endophytic fungi showed the highest plant development traits. Therefore, the selected endophytic fungi have the potential to be used as biofertilizers, especially when combined. They could eventually replace chemical fertilizers because they are environmentally friendly, beneficial to humans, and can even promote sustainable agriculture.
Assuntos
Colletotrichum , Endófitos , Ácidos Indolacéticos , Mangifera , Reguladores de Crescimento de Plantas , Endófitos/isolamento & purificação , Endófitos/metabolismo , Mangifera/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Colletotrichum/crescimento & desenvolvimento , Giberelinas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Sideróforos/metabolismo , Desenvolvimento Vegetal , Germinação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ascomicetos/isolamento & purificação , Fungos/isolamento & purificação , Fungos/classificação , Fungos/metabolismo , Fungos/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Clorofila/metabolismo , Amônia/metabolismo , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , BiomassaRESUMO
Saccharomyces cerevisiae CCMA 0159 is reported as a promising biocontrol agent against ochratoxin A (OTA)-producing fungi in coffee. Coffea arabica and Coffea canephora (var. Conilon or Robusta) are the most widely consumed coffee species around the world, cultivated in tropical and subtropical regions, each exhibiting distinct physicochemical and sensory characteristics. The objective of this study was to compare the growth and OTA production by Aspergillus carbonarius, A. ochraceus, and A. westerdijkiae in C. arabica and C. canephora, along with assessing the efficiency of S. cerevisiae CCMA 0159 in biocontrolling ochratoxigenic fungi in both coffee varieties. A. carbonarius exhibited a higher growth rate and OTA production in both coffee varieties, with C. canephora showing particular susceptibility. Conversely, A. ochraceus and A. westerdijkiae demonstrated lower growth and OTA production. S. cerevisiae was effective in biocontrolling the fungal isolates, inhibiting over 80 % of A. carbonarius growth in both coffee varieties. Among the mechanisms of action of the biological control agent, the production of volatile organic compounds stands out. The results of this study confirm the significant potential of S. cerevisiae CCMA 0159 as a biocontrol agent against Aspergillus for application in coffee-producing areas.
Assuntos
Aspergillus , Coffea , Ocratoxinas , Saccharomyces cerevisiae , Ocratoxinas/biossíntese , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Coffea/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Café/microbiologia , Agentes de Controle Biológico , Microbiologia de AlimentosRESUMO
BACKGROUND: Chestnut fruit quality is affected by fungal contamination. The study of the patterns of contamination in the postharvest is crucial to individuate the critical phases and propose solutions. To understand how fungal colonization varies on fruits, the composition of mycobiota was investigated in postharvest handling and in between tissues (shell and kernel). RESULTS: Fungal sequences were clustered into 308 operational taxonomic units (OTUs). Biodiversity was higher in shell than kernel tissues. Results evidenced the risk of new contamination in specific phases such as the 'cold bath' and storage. Genera known as mycotoxin producers were detected in all phases. Specifically, 47 OTUs belonging to Penicillium, eight to Fusarium and two to Aspergillus genera were identified. While Fusarium spp. was sensitive to 'warm bath' phase, Penicillium spp. was largely insensitive and accumulated in storage conditions. Surprisingly, Aspergillus spp. was poorly represented. Aflatoxin, ochratoxin A, fumonisins and T-2/HT-2 detection was performed for shell and kernel, and process phases. Higher contamination was observed on shell than in kernel samples. While aflatoxins were within the European Union (EU) limits for dry fruits, Ochratoxin exceeded the EU limits. The present study represents the first report of fumonisins and T-2/HT-2 detection in chestnuts. CONCLUSION: Fungal contamination taxa is high in chestnut fruits following postharvest handling and storage. A parametrization of process phases such as the 'warm bath' is functional to reduce the risk for some taxa. For other spoilage and mycotoxigenic genera strict sanitation procedures of equipment and water must be individuated and implemented to reduce their impact. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Contaminação de Alimentos , Armazenamento de Alimentos , Frutas , Fungos , Micotoxinas , Frutas/microbiologia , Frutas/química , Micotoxinas/análise , Micotoxinas/metabolismo , Fungos/isolamento & purificação , Fungos/classificação , Fungos/genética , Contaminação de Alimentos/análise , Micobioma , Aesculus/microbiologia , Aspergillus/isolamento & purificação , Aspergillus/classificação , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Penicillium/classificação , Penicillium/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Nozes/microbiologia , Nozes/químicaRESUMO
Accurate identification of the fungal community spontaneously colonizing food products, aged in natural and not controlled environments, provides information about potential mycotoxin risk associated with its consumption. Autochthonous mycobiota colonizing cheese aging in Dossena mines, was investigated and characterized by two approaches: microbial isolations and metabarcoding. Microbial isolations and metabarcoding analysis were conducted on cheese samples, obtained by four batches, produced in four different seasons of the year, aged for 90 and 180 days, by five dairy farms. The two approaches, with different taxonomical resolution power, highlighted Penicillium biforme among filamentous fungi, collected from 58 out of 68 cheeses, and Debaryomyces hansenii among yeasts, as the most abundant species (31 ÷ 65%), none representing a health risk for human cheese consumption. Shannon index showed that the richness of mycobiota increases after 180 days of maturation. Beta diversity analysis highlighted significant differences in composition of mycobiota of cheese produced by different dairy farms and aged for different durations. Weak negative growth interaction between P. biforme and Aspergillus westerdijkiae by in vitro analysis was observed leading to hypothesize that a reciprocal control is possible, also affected by natural environmental conditions, possibly disadvantageous for the last species.
Assuntos
Queijo , Fungos , Queijo/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Microbiologia de Alimentos , Micobioma , Penicillium/isolamento & purificação , Penicillium/classificação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Aspergillus/genética , Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Contaminação de Alimentos/análise , Indústria de Laticínios , Debaryomyces/genética , BiodiversidadeRESUMO
Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.
Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus , Trichoderma , Compostos Orgânicos Voláteis , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Aflatoxinas/biossíntese , Trichoderma/metabolismo , Trichoderma/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico/farmacologia , Antibiose , Modelos BiológicosRESUMO
Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.
Assuntos
Aspergillus , Lactobacillales , Esterigmatocistina , Zea mays , Zea mays/microbiologia , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Lactobacillales/metabolismo , Antifúngicos/farmacologia , Contaminação de Alimentos/prevenção & controle , AntibioseRESUMO
This research was designed to isolate the predominant L-asparaginase-producing fungus from rhizosphere soil of tapioca field and assess the suitable growth conditions required to produce maximum L-asparaginase activity. The Aspergillus tubingensis was identified as a predominant L-asparaginase producing fungal isolate from 15 isolates, and it was characterized by 18S rRNA sequencing. The L-asparaginase-producing activity was confirmed by pink color zone formation around the colonies in modified Czapek Dox agar plate supplemented with 1% L-Asparagine. The optimal growth conditions required for the L-asparaginase production by A. tubingensis were optimized as pH 6.0, temperature 30 °C, glucose as carbon source, 1.5% of L-Asparagine, ammonium sulphate as nitrogen source, rice husk as natural L-Asparagine enriched source, and 8 days of the incubation period. The L-Asparaginase activity from A. tubingensis was excellent under these optimal growth conditions. It significantly used rice husk as an alternative to synthetic L-Asparagine. As a result, this may be considered a sustainable method of converting organic waste into valuable raw material for microbial enzyme production.
Assuntos
Asparaginase , Aspergillus , Microbiologia do Solo , Asparaginase/biossíntese , Asparaginase/metabolismo , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/enzimologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
This study focused on the identification of rot-causing fungi in Citrus × tangelo (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of Penicillium citrinum and Aspergillus sydowii. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on P. citrinum and A. sydowii, with EC50 values of 85.4 µg/mL and 60.12 µg/mL, respectively. The inhibition zones of 150 µg/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed P. citrinum and A. sydowii as the primary pathogenic fungi, with their growth effectively inhibited by AEW.
Assuntos
Aspergillus , Citrus , Penicillium , Doenças das Plantas , Água , Doenças das Plantas/microbiologia , Penicillium/efeitos dos fármacos , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Citrus/microbiologia , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/crescimento & desenvolvimento , Água/química , Frutas/microbiologia , Eletrólise , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/genética , Citrus sinensis/microbiologiaRESUMO
Aspergillus cristatus is a crucial edible fungus used in tea fermentation. In the industrial fermentation process, the fungus experiences a low to high osmotic pressure environment. To explore the law of material metabolism changes during osmotic pressure changes, NaCl was used here to construct different osmotic pressure environments. Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis was performed to analyze the distribution and composition of A. cristatus under different salt concentrations. At the same time, the in vitro antioxidant activity was evaluated. The LC-MS metabolomics analysis revealed significant differences between three A. cristatus mycelium samples grown on media with and without NaCl concentrations of 8% and 18%. The contents of gibberellin A3, A124, and prostaglandin A2 related to mycelial growth and those of arabitol and fructose-1,6-diphosphate related to osmotic pressure regulation were significantly reduced at high NaCl concentrations. The biosynthesis of energy-related pantothenol and pantothenic acid and antagonism-related fluvastatin, aflatoxin, and alternariol significantly increased at high NaCl concentrations. Several antioxidant capacities of A. cristatus mycelia were directly related to osmotic pressure and exhibited a significant downward trend with an increase in environmental osmotic pressure. The aforementioned results indicate that A. cristatus adapts to changes in salt concentration by adjusting their metabolite synthesis. At the same time, a unique set of strategies was developed to cope with high salt stress, including growth restriction, osmotic pressure balance, oxidative stress response, antioxidant defense, and survival competition.
Assuntos
Antioxidantes , Aspergillus , Metabolômica , Estresse Salino , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Metabolômica/métodos , Cromatografia Líquida , Antioxidantes/metabolismo , Metaboloma , Pressão Osmótica , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/química , Espectrometria de Massas , Cloreto de Sódio/farmacologia , Espectrometria de Massa com Cromatografia Líquida , Álcoois AçúcaresRESUMO
There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.
Assuntos
Alternaria , Aspergillus , Bioprospecção , Endófitos , Germinação , Sementes , Sideróforos , Zea mays , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/fisiologia , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Sideróforos/metabolismo , Bioprospecção/métodos , Ácidos Indolacéticos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Antioxidantes/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismoRESUMO
In feed, propionic acid is the weak organic acid of choice to prevent growth of spoilage fungi. For safe and easy industrial handling this antifungal agent is applied in the presence of neutralizing ammonium, which however has the disadvantage to negatively affect the efficacy of fungus-inhibiting properties of the formulation. In the present study we investigated the impact of medium chain fatty acids (MCFA) on the antifungal efficacy of an ammonium propionate formulation on dormant- and germinating conidia as well as germ tubes and hyphae of Aspergillus chevalieri, a xerophilic fungus predominant on moulded feed. Dormant conidia were not affected by 32 mM of ammonium propionate after a 28 h-treatment in demi water. Similar results were obtained with solely 0.52 mM MCFA. However, the combination of both components nearly eradicated formation of colonies from these conidia and was accompanied by distortion of the cellular structure as was visible with light- and transmission electron microscopy. Germination of conidia, characterised by swelling and germ tube formation, was significantly decreased in the presence of 16 mM ammonium propionate and 0.26 mM MCFA, while the latter component itself did not significantly decrease germination. We conclude that a combination of ammonium propionate and MCFA had a synergistic antifungal effect on dormant and germinating conidia. When the combination of ammonium propionate and MCFA was tested on hyphae for 30 min, we observed that cell death was significantly increased in comparison to components alone. Treatment of the hyphae with 16 mM of ammonium propionate caused aberrant mitochondria, as evidenced by irregularly shaped and enlarged mitochondria that contained electron-dense inclusions as observed by transmission electron microscopy. When the combination of ammonium propionate and MCFA was applied against the hyphae, more severe cell damage was observed, with signs of autophagy. Summarised, our results demonstrate synergistic antifungal effects of ammonium propionate and medium chain fatty acids on fungal survival structures, during their germination and after a short (sudden) treatment of growing cells. This is of potential importance for several areas of feed and food storage and shelf-life.
Assuntos
Antifúngicos , Aspergillus , Sinergismo Farmacológico , Ácidos Graxos , Hifas , Propionatos , Esporos Fúngicos , Propionatos/farmacologia , Antifúngicos/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Ácidos Graxos/farmacologia , Ração Animal/microbiologia , Conservantes de Alimentos/farmacologia , Microbiologia de AlimentosRESUMO
This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.
Assuntos
Conservação de Alimentos , Conservantes de Alimentos , Punica granatum , Pós , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Punica granatum/química , Conservação de Alimentos/métodos , Penicillium/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Frutas/química , Armazenamento de Alimentos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
Presented paper deals with a novel application of the (nonlinear) logistic equation to model an elimination of microscopic filaments types of fungi-molds from affected materials via different external inactivation techniques. It is shown that if the inactivation rate of the external source is greater than the maximum natural growth rate of mycelium, the mold colony becomes destroyed after a finite time. Otherwise, the mycelium may survive the external attack only at a sufficiently large initial concentration of the inoculum. Theoretically determined growth curves are compared with the experimental data for Aspergillus brasiliensis mold inactivated by using both cold atmospheric plasma (CAP) and UV-germicidal lamp. Model presented in the article may be applied also to other classes of microorganisms (e.g. bacteria).
Assuntos
Aspergillus , Aspergillus/crescimento & desenvolvimento , Aspergillus/fisiologia , Fungos , Gases em Plasma/farmacologia , Raios Ultravioleta , Modelos Biológicos , Micélio/crescimento & desenvolvimentoRESUMO
AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.
Assuntos
Aspergillus , Meios de Cultura , Gases em Plasma , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Gases em Plasma/farmacologia , Modelos Biológicos , Temperatura , ÁgarRESUMO
There is great concern about the risk posed by the consumption of food contaminated with aflatoxins (AF), produced mostly by Aspergillus strains, that can also be found in dry-fermented meat products (DFMPs). The aim of this study was to investigate the inhibitory effect of meat starter culture (SC), frequently used for fermentation in the meat industry, on A. parasiticus growth and the production of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and sterigmatocystin (STE) on different meat-based (CMA) and salami model (SM-G) media. Incubation was carried out under optimal conditions for fungal growth and under typical conditions for ripening of DFMPs for 21 days. Reversed-phase UPLC-MS/MS analysis was performed to determine mycotoxin production. SC reduced A. parasiticus growth more on CMA than on SM-G media. AFB1 formation was inhibited on both types of SC-containing media, although SC generally had a stronger inhibitory effect on AFB1 production on CMA than on SM-G. AFB1 and AFB2 were produced on CMA, while AFB1 dominated in SM-G, AFG1, and AFG2 were not detected in any media. The results show that SC inhibited AFB1 formation of A. parasiticus on SM-G media after 21 days of incubation under typical conditions for the production of DFMPs. These results indicate the necessity to investigate AF on natural matrices in an environment that is as similar as possible to real conditions in the production of DFMPs.
Assuntos
Aflatoxinas , Aspergillus , Produtos da Carne , Aflatoxinas/biossíntese , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Fermentação , AnimaisRESUMO
Previous investigations proved the potential of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 as suitable biocontrolling agents against Aspergillus sp. through the production of soluble and volatile bioactive antifungal compounds. The present study delves into those finding by means of the identification of the volatile compounds produced by brewer's strains that demonstrated fungistatic and fungicidal effects against Aspergillus flavus and A. parasiticus when cultured in brewer's wort agar plates. Traditional brewer's yeasts such as S. cerevisiae MBELGA62 and Saccharomyces pastorianus SAFS235 synthetize volatiles that fully inhibited mycelial development for up to 9 days at 30 °C. The non-conventional brewer's strains P. kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122 increased the lag phase by >100% and significantly reduced the fungal growth rate by 27.5-43.0% and 15.4-31.4%, respectively. In this context, 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol were identified as the main antifungal agents involved in Aspergillus sp.'s inhibition.