Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791343

RESUMO

AIMS: The current review aims to outline and summarize the latest research on aflatoxin, with research studies describing natural, herbal and chemical compound applications in animal (pig) models and in vitro cellular studies. Aflatoxin, a carcinogenic toxin metabolite, is produced by Aspergillus flavus in humid environments, posing a threat to human health and crop production. The current treatment involves the prevention of exposure to aflatoxin and counteracting its harmful toxic effects, enabling survival and research studies on an antidote for aflatoxin. OBJECTIVES: To summarize current research prospects and to outline the influence of aflatoxin on animal forage in farm production, food and crop processing. The research application of remedies to treat aflatoxin is undergoing development to pinpoint biochemical pathways responsible for aflatoxin effects transmission and actions of treatment. SIGNIFICANCE: To underline the environmental stress of aflatoxin on meat and dairy products; to describe clinical syndromes associated with aflatoxicosis on human health that are counteracted with proposed treatment and preventive interventions. To understand how to improve the health of farm animals with feed conditions.


Assuntos
Aflatoxina B1 , Ração Animal , Contaminação de Alimentos , Animais , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/efeitos adversos , Contaminação de Alimentos/prevenção & controle , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos
2.
Int J Food Microbiol ; 418: 110727, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759292

RESUMO

Aspergillus flavus is a notorious fungus that contaminates food crops with toxic aflatoxins, posing a serious threat to human health and the agricultural economy. To overcome the inadequacy of traditional control methods and meet consumer preferences for natural-sources additives, there is an urgent demand for novel biocontrol agents that are safe and efficient. This study aims to investigate the antifungal properties of a novel antifungal agent derived from the biologically safe Lactiplantibacillus plantarum WYH. Firstly, antifungal peptides (AFPs) with a molecular weight of less than 3kD, exhibiting remarkable temperature stability and effectively retarding fungal growth in a dose-dependent manner specifically against A. flavus, were concentrated from the fermentation supernatant of L. plantarum WYH and were named as AFPs-WYH. Further analysis demonstrated that AFPs-WYH might exert antifungal effects through the induction of oxidative stress, disruption of mitochondrial function, alteration of membrane permeability, and cell apoptosis in A. flavus. To further validate our findings, a transcriptomics analysis was conducted on A. flavus treated with 2 and 5 mg/mL of AFPs-WYH, which elucidated the potential effect of AFPs-WYH administration on the regulation of genes involved in impairing fungal development and preventing aflatoxin biosynthesis pathways. Overall, AFPs-WYH reduced the A. flavus proliferation and affected the AFB1 biosynthesis, exhibiting a promising potential for food industry applications as a biopreservative and biocontrol agent.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Contaminação de Alimentos/prevenção & controle , Lactobacillus plantarum/metabolismo , Fermentação , Peptídeos/farmacologia , Aflatoxinas/biossíntese , Estresse Oxidativo/efeitos dos fármacos
3.
Toxicon ; 243: 107749, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710308

RESUMO

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.


Assuntos
Antifúngicos , Aspergillus flavus , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Antifúngicos/farmacologia , Lactobacillales/metabolismo
4.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38733636

RESUMO

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Assuntos
Aspergillus flavus , Óleo de Melaleuca , Terpenos , Triticum , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Óleo de Melaleuca/farmacologia , Terpenos/farmacologia , Triticum/microbiologia , Antifúngicos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Testes de Sensibilidade Microbiana , Cromatografia Gasosa-Espectrometria de Massas , Grão Comestível/microbiologia , Conservação de Alimentos/métodos
5.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38794887

RESUMO

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Assuntos
Antifúngicos , Aspergillus flavus , Técnicas de Cocultura , Lactobacillales , Metabolômica , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Fermentação , Aflatoxinas/biossíntese , Grão Comestível/microbiologia , Pediococcus pentosaceus/metabolismo , Antibiose , Microbiologia de Alimentos
6.
Sci Rep ; 14(1): 11952, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796501

RESUMO

Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.


Assuntos
Aspergillus flavus , Endófitos , Chumbo , Triticum , Triticum/microbiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Chumbo/toxicidade , Chumbo/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Polissacarídeos/farmacologia , Biodegradação Ambiental , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos
7.
BMC Plant Biol ; 24(1): 394, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741071

RESUMO

Wheat is one of the essential crops for the human and animal nutrition, however, contamination with aflatoxigenic fungi, due to the improper storage conditions and high humidity, was the main global threats. So, preventing the growth of aflatoxigenic fungi in stored wheat grains, by using different essential oils was the main objective of this work. Aspergillus flavus EFBL-MU12 PP087400, EFBL-MU23 PP087401 and EFBL-MU36 PP087403 isolates were the most potent aflatoxins producers inhabiting wheat grains. The effect of storage conditions of wheat grains "humidity, temperature, incubation period, and pH" on growth of A. flavus, was assessed by the response surface methodology using Plackett-Burman design and FCCD. The highest yield of aflatoxins EFBL-MU12 B1 and B2 by A. flavus grown on wheat grains were 145.3 and 7.6 µg/kg, respectively, at incubation temperature 35°C, 16% moisture contents, initial pH 5.0, and incubated for 14 days. The tested oils had a powerful antifungal activity for the growth and aflatoxins production by A. flavus in a concentration-dependent manner. Among these oils, cinnamon oil had the highest fungicidal activity for A. flavus at 0.125%, with about 85-90 % reduction to the aflatoxins B1 and B2, conidial pigmentation and chitin contents on wheat grains. From the SEM analysis, cinnamon oils had the most deleterious effect on A. flavus with morphological aberrations to the conidial heads, vegetative mycelia, alteration in conidiophores identity, hyphae shrank, and winding. To emphasize the effect of the essential oils on the aflatoxins producing potency of A. flavus, the molecular expression of the aflatoxins biosynthetic genes was estimated by RT-qPCR. The molecular expression of nor-1, afLR, pKsA and afLJ genes was suppressed by 94-96%, due to cinnamon oil at 0.062% compared to the control. Conclusively, from the results, cinnamon oils followed by the peppermint oils displayed the most fungicidal activity for the growth and aflatoxins production by A. flavus grown on wheat grains.


Assuntos
Aflatoxinas , Aspergillus flavus , Cinnamomum zeylanicum , Óleos Voláteis , Triticum , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Triticum/microbiologia , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Armazenamento de Alimentos , Grão Comestível/microbiologia
8.
J Agric Food Chem ; 72(19): 11185-11194, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687832

RESUMO

Aspergillus flavus contamination in agriculture and food industries poses threats to human health, leading to a requirement of a safe and effective method to control fungal contamination. Chitosan-based nitrogen-containing derivatives have attracted much attention due to their safety and enhanced antimicrobial applications. Herein, a new benzimidazole-grafted chitosan (BAC) was synthesized by linking the chitosan (CS) with a simple benzimidazole compound, 2-benzimidazolepropionic acid (BA). The characterization of BAC was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H and 13C NMR). Then, the efficiency of BAC against A. flavus ACCC 32656 was investigated in terms of spore germination, mycelial growth, and aflatoxin production. BAC showed a much better antifungal effect than CS and BA. The minimum inhibitory concentration (MIC) value was 1.25 mg/mL for BAC, while the highest solubility of CS (16.0 mg/mL) or BA (4.0 mg/mL) could not completely inhibit the growth of A. flavus. Furthermore, results showed that BAC inhibited spore germination and elongation by affecting ergosterol biosynthesis and the cell membrane integrity, leading to the permeabilization of the plasma membrane and leakage of intracellular content. The production of aflatoxin was also inhibited when treated with BAC. These findings indicate that benzimidazole-derived natural CS has the potential to be used as an ideal antifungal agent for food preservation.


Assuntos
Aspergillus flavus , Benzimidazóis , Quitosana , Fungicidas Industriais , Testes de Sensibilidade Microbiana , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Quitosana/farmacologia , Quitosana/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Aflatoxinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
9.
BMC Microbiol ; 24(1): 140, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658810

RESUMO

Kojic acid is a wonderful fungal secondary metabolite that has several applications in the food, medical, and agriculture sectors. Many human diseases become resistant to normal antibiotics and normal treatments. We need to search for alternative treatment sources and understand their mode of action. Aspergillus flavus ASU45 (OL314748) was isolated from the caraway rhizosphere as a non-aflatoxin producer and identified genetically using 18S rRNA gene sequencing. After applying the Box-Behnken statistical design to maximize KA production, the production raised from 39.96 to 81.59 g/l utilizing (g/l) glucose 150, yeast extract 5, KH2PO4 1, MgSO4.7H2O 2, and medium pH 3 with a coefficient (R2) of 98.45%. Extracted KA was characterized using FTIR, XRD, and a scanning electron microscope. Crystalized KA was an effective antibacterial agent against six human pathogenic bacteria (Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Serratia marcescens, and Serratia plymuthica). KA achieves high inhibition activity against Bacillus cereus, K. pneumonia, and S. plymuthica at 100 µg/ml concentration by 2.75, 2.85, and 2.85 compared with chloramphenicol which gives inhibition zones 1, 1.1, and 1.6, respectively. Crystalized KA had anticancer activity versus three types of cancer cell lines (Mcf-7, HepG2, and Huh7) and demonstrated high cytotoxic capabilities on HepG-2 cells that propose strong antitumor potent of KA versus hepatocellular carcinoma. The antibacterial and anticancer modes of action were illustrated using the molecular docking technique. Crystalized kojic acid from a biological source represented a promising microbial metabolite that could be utilized as an alternative antibacterial and anticancer agent effectively.


Assuntos
Antibacterianos , Antineoplásicos , Aspergillus flavus , Simulação de Acoplamento Molecular , Pironas , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Pironas/farmacologia , Pironas/química , Pironas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação
10.
Mycologia ; 116(3): 355-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573188

RESUMO

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Assuntos
Antibacterianos , Artemia , Aspergillus flavus , Penicillium , Microbiologia do Solo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Artemia/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos , Penicillium/química , Penicillium/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Rizosfera , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação
11.
J Hazard Mater ; 471: 134385, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678711

RESUMO

Nitric oxide (NO) is a signaling molecule with diverse roles in various organisms. However, its role in the opportunistic pathogen Aspergillus flavus remains unclear. This study investigates the potential of NO, mediated by metabolites from A. oryzae (AO), as an antifungal strategy against A. flavus. We demonstrated that AO metabolites effectively suppressed A. flavus asexual development, a critical stage in its lifecycle. Transcriptomic analysis revealed that AO metabolites induced NO synthesis genes, leading to increased intracellular NO levels. Reducing intracellular NO content rescued A. flavus spores from germination inhibition caused by AO metabolites. Furthermore, exogenous NO treatment and dysfunction of flavohemoglobin Fhb1, a key NO detoxification enzyme, significantly impaired A. flavus asexual development. RNA-sequencing and metabolomic analyses revealed significant metabolic disruptions within tricarboxylic acid (TCA) cycle upon AO treatment. NO treatment significantly reduced mitochondrial membrane potential (Δψm) and ATP generation. Additionally, aberrant metabolic flux within the TCA cycle was observed upon NO treatment. Further analysis revealed that NO induced S-nitrosylation of five key TCA cycle enzymes. Genetic analysis demonstrated that the S-nitrosylated Aconitase Acon and one subunit of succinate dehydrogenase Sdh2 played crucial roles in A. flavus development by regulating ATP production. This study highlights the potential of NO as a novel antifungal strategy to control A. flavus by compromising its mitochondrial function and energy metabolism.


Assuntos
Aspergillus flavus , Ciclo do Ácido Cítrico , Mitocôndrias , Óxido Nítrico , Ciclo do Ácido Cítrico/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antifúngicos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
12.
Food Chem ; 449: 139240, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599109

RESUMO

The study reports the efficacy of nanofabricated citronellal inside the chitosan biopolymer (NeCn) against Aspergillus flavus growth, aflatoxin B1 (AFB1) production, and active ingredient biodeterioration (Piperine) in Piper longum L. The prepared NeCn was characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that the NeCn exhibited distantly improved antifungal (1.25 µL/mL) and AFB1 inhibition (1.0 µL/mL) compared to free Cn. The perturbances in membrane function, mitochondrial membrane potential, antioxidant defense system, and regulatory genes (Ver-1 and Nor-1) of AFB1 biosynthesis were reported as probable modes of action of NeCn. The NeCn (1.25 µL/mL) effectively protects the P. longum from A. flavus (78.8%), AFB1 contamination (100%), and deterioration of Piperine (62.39%), thus demonstrating its potential as a promising novel antifungal agent for food preservation.


Assuntos
Monoterpenos Acíclicos , Aflatoxina B1 , Aspergillus flavus , Quitosana , Piper , Aflatoxina B1/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Quitosana/química , Quitosana/farmacologia , Piper/química , Biopolímeros/química , Biopolímeros/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Aldeídos/farmacologia , Aldeídos/química , Antifúngicos/farmacologia , Antifúngicos/química , Conservação de Alimentos/métodos , Monoterpenos/farmacologia , Monoterpenos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
13.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466647

RESUMO

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Assuntos
Antioxidantes , Canabidiol , Proliferação de Células , Canabidiol/farmacologia , Canabidiol/química , Humanos , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antifúngicos/farmacologia , Antifúngicos/química , Penicillium/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos
14.
J Antimicrob Chemother ; 79(5): 1169-1175, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546795

RESUMO

BACKGROUND: Invasive aspergillosis is a severe fungal infection that affects multiple organ systems including the CNS and the lungs. Isavuconazole, a novel triazole antifungal agent, has demonstrated promising activity against Aspergillus spp. However, data on the penetration of isavuconazole into the CNS and ELF and intracellular accumulation remain limited. MATERIALS AND METHODS: We conducted a prospective single-centre pharmacokinetic (PK) study in 12 healthy volunteers. Subjects received seven doses of 200 mg isavuconazole to achieve an assumed steady-state. After the first and final infusion, plasma sampling was conducted over 8 and 12 h, respectively. All subjects underwent one lumbar puncture and bronchoalveolar lavage, at either 2, 6 or 12 h post-infusion of the final dose. PBMCs were collected in six subjects from blood to determine intracellular isavuconazole concentrations at 6, 8 or 12 h. The AUC/MIC was calculated for an MIC value of 1 mg/L, which marks the EUCAST susceptibility breakpoint for Aspergillus fumigatus and Aspergillus flavus. RESULTS: C max and AUC0-24h of isavuconazole in plasma under assumed steady-state conditions were 6.57 ±â€Š1.68 mg/L (mean ±â€ŠSD) and 106 ±â€Š32.1 h·mg/L, respectively. The average concentrations measured in CSF, ELF and in PBMCs were 0.07 ±â€Š0.03, 0.94 ±â€Š0.46 and 27.1 ±â€Š17.8 mg/L, respectively. The AUC/MIC in plasma, CSF, ELF and in PBMCs under steady-state conditions were 106 ±â€Š32.1, 1.68 ±â€Š0.72, 22.6 ±â€Š11.0 and 650 ±â€Š426 mg·h/L, respectively. CONCLUSION: Isavuconazole demonstrated moderate penetration into ELF, low penetrability into CSF and high accumulation in PBMCs. Current dosing regimens resulted in sufficient plasma exposure in all subjects to treat isolates with MICs ≤ 1 mg/L.


Assuntos
Antifúngicos , Voluntários Saudáveis , Nitrilas , Piridinas , Triazóis , Humanos , Triazóis/farmacocinética , Triazóis/administração & dosagem , Piridinas/farmacocinética , Piridinas/administração & dosagem , Antifúngicos/farmacocinética , Antifúngicos/administração & dosagem , Masculino , Adulto , Nitrilas/farmacocinética , Nitrilas/administração & dosagem , Estudos Prospectivos , Feminino , Infusões Intravenosas , Adulto Jovem , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos
15.
BMC Complement Med Ther ; 23(1): 286, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580785

RESUMO

BACKGROUND: Tea (Camellia sinensis L.) flowers will compete with tea leaves in nutrition and are abandoned as an undesirable by-product. In this study, the biological efficacy of tea flowers was investigated. Further exploration of its antifungal activity was explained. METHODS: Tea flowers harvested from China were characterized in term of component, antioxidant ability, tyrosinase inhibition, and antifungal ability. Chemical compounds of tea flowers were analyzed by LC-MS. Disinfectant compounds were identified in tea flowers, and 2-ketobutyric acid exhibited antifungal activity against Aspergillus flavusCCTCC AF 2023038. The antifungal mechanism of 2-ketobutyric acid was further investigated by RNA-seq. RESULTS: Water-soluble tea flower extracts (TFEs) exhibited free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) as well as a high ferric-reducing ability. However, no inhibition of tyrosinase activity was observed. In the antifungal test, 6.4 mg/mL TFE reached 71.5% antifungal rate and the electrical conductivity of the culture broth increased with increasing concentration of TFE, implying that it damaged the fungal cell membrane by the TFE. Several disinfectants were identified in TFE by LC-MS, and 2-ketobutyric acid was also confirmed to be capable of fungal inhibition. Propidium iodide (PI) staining indicated that 2-ketobutyric acid caused damage to the cell membrane. RNA-seq analysis revealed that 3,808 differentially expressed genes (DEGs) were found in A. flavus CCTCC AF 2023038 treated by 2-ketobutyric acid, and more than 1,000 DEGs involved in the integral and intrinsic component of membrane were affected. Moreover, 2-ketobutyric acid downregulated aflatoxin biosynthesis genes and decreased the aflatoxin production. CONCLUSIONS: Overall, TFE exhibited excellent antioxidant ability and fungal inhibition against A. flavus CCTCC AF 2023038 due to its abundant disinfectant compounds. As a recognized food additive, 2-ketobutyric acid is safe to use in the food industry and can be utilized as the basis for the research and development of strong fungicides.


Assuntos
Camellia sinensis , Flores , Extratos Vegetais , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Camellia sinensis/química , Flores/química , Extratos Vegetais/farmacologia
16.
Microbiol Spectr ; 11(4): e0433922, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358460

RESUMO

Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.


Assuntos
Aneuploidia , Antifúngicos , Aspergillus flavus , Farmacorresistência Fúngica , Voriconazol , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Voriconazol/farmacologia , Dosagem de Genes , Cromossomos Fúngicos , Antifúngicos/farmacologia
17.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056811

RESUMO

Mimosa tenuiflora aqueous extract (MAE) is rich in phenolic compounds. Among them, condensed tannins have been demonstrated to exhibit a strong antioxidant and antiaflatoxin B1 activities in Aspergillus flavus. Since antioxidant capacity can change with time due to environmental interactions, this study aimed to evaluate the ability of encapsulation by spray-drying of Mimosa tenuiflora aqueous extract to preserve their biological activities through storage. A dry formulation may also facilitate transportation and uses. For that, three different wall materials were used and compared for their efficiency. Total phenolic content, antioxidant activity, antifungal and antiaflatoxin activities were measured after the production of the microparticles and after one year of storage at room temperature. These results confirmed that encapsulation by spray-drying using polysaccharide wall materials is able to preserve antiaflatoxin activity of Mimosa tenuiflora extract better than freezing.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Composição de Medicamentos/métodos , Mimosa/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Secagem por Atomização , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Armazenamento de Medicamentos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Fenóis/análise , Polissacarídeos/química , Pós/análise , Pós/química
18.
Carbohydr Polym ; 275: 118673, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742409

RESUMO

Chitosan oligosaccharides (COS) are a derivative of low molecular weight chitosan and are potent natural antimicrobial agents. The antimicrobial activity of COS against Aspergillus flavus and Aspergillus fumigatus was evaluated by minimum inhibitory concentration (MIC) and inhibition of mycelial growth. The MICs of COS against these two fungi were 31.2 and 15.6 mg/mL, respectively. COS treatment rendered fungal mycelia wrinkled and deformed with a fractured appearance. COS also increased cellular permeability leading to a significant leakage of cellular components indicating membrane damage. This compound also dose-dependently reduced chitin production and enhanced chitinase activity while enhancing the accumulation of reactive oxygen species (ROS). These characteristics suggested that COS has inhibitory effects against food spoilage fungi and acts on the cell wall and membrane and alters cellular metabolism. COS shows promise for food industry applications since it is non-toxic to higher organisms.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Indústria Alimentícia/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura/métodos , Espécies Reativas de Oxigênio/metabolismo
19.
Future Microbiol ; 16: 1153-1160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34615383

RESUMO

Aim: To evaluate the activity of miltefosine (MFS), in its free form or loaded-alginate nanoparticles (MFS-AN), alone or combined with voriconazole (VRC) on Aspergillus fumigatus and Aspergillus flavus. Materials & methods: A broth microdilution assay was used for the susceptibility testing of Aspergillus isolates, and the antifungal efficacy was assessed using the aspergillosis model in Galleria mellonella larvae. Results: The in vitro synergistic effect of MFS with VRC was observed only against A. fumigatus, whereas both combined therapies (MFS + VRC and MFS-AN + VRC) showed synergism in reducing the larval mortality rate and fungal burden in the larvae infected by A. fumigatus and A. flavus. Conclusions: MFS and MFS-AN combined with VRC may be an important strategy for improving antifungal therapy against aspergillosis.


Assuntos
Antifúngicos , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Voriconazol , Alginatos , Antifúngicos/farmacologia , Portadores de Fármacos , Sinergismo Farmacológico , Nanopartículas , Fosforilcolina/farmacologia , Voriconazol/farmacologia
20.
Toxins (Basel) ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34678986

RESUMO

Aflatoxin biosynthesis has established a connection with oxidative stress, suggesting a prevention strategy for aflatoxin contamination via reactive oxygen species (ROS) removal. Epigallocatechin gallate (EGCG) is one of the most active and the richest molecules in green tea with well-known antioxidant effects. Here, we found EGCG could inhibit aflatoxin B1 (AFB1) biosynthesis without affecting mycelial growth in Aspergillus flavus, and the arrest occurred before the synthesis of toxin intermediate metabolites. Further RNA-seq analysis indicated that multiple genes involved in AFB1 biosynthesis were down-regulated. In addition, EGCG exposure facilitated the significantly decreased expression of AtfA which is a bZIP (basic leucine zipper) transcription factor mediating oxidative stress. Notably, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that the MAPK signaling pathway target transcription factor was down-regulated by 1 mg/mL EGCG. Further Western blot analysis showed 1 mg/mL EGCG could decrease the levels of phosphorylated SakA in both the cytoplasm and nucleus. Taken together, these data evidently supported that EGCG inhibited AFB1 biosynthesis and alleviated oxidative stress via MAPK signaling pathway. Finally, we evaluated AFB1 contamination in soy sauce fermentation and found that EGCG could completely control AFB1 contamination at 8 mg/mL. Conclusively, our results supported the potential use of EGCG as a natural agent to prevent AFB1 contamination in fermentation industry.


Assuntos
Aflatoxina B1/biossíntese , Antioxidantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Catequina/análogos & derivados , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Aspergillus flavus/metabolismo , Catequina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA