Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 126(2): 149-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35078586

RESUMO

AAA ATPases widely exist in many organisms and function in various organelles. However, there is little information about AAA ATPase functioning in endocytosis. In Aspergillus oryzae, we previously discovered a putative AAA ATPase AipA that would be involved in endocytosis. Here, we further examined the function of AipA and AoAbp1 in endocytosis using enhanced green fluorescent protein (EGFP)-tagged arginine permease AoCan1 as an endocytic marker. In the ΔaipA strain, endocytosis of AoCan1-EGFP was more facilitated than the control strain, suggesting that AipA negatively regulates endocytosis. In contrast, in the ΔAoabp1 strain, endocytosis of AoCan1-EGFP was delayed compared with the control strain, suggesting that AoAbp1 positively functions in endocytosis. In addition, in the ΔaipAΔAoabp1 strain, endocytosis of AoCan1-EGFP was delayed. AipA localized at the endocytic collar of the hyphal tip, only in the presence of AoAbp1, suggesting AipA functions downstream of AoAbp1 in endocytosis. Moreover, we investigated the aipA-overexpressing strain, and found that endocytosis of AoCan1-EGFP was inhibited. Furthermore, we examined strains expressing aipAK542A or aipAE596Q, which decreased ATPase activity, in the backgrounds of complementation or overexpression, respectively, and found that AoCan1-EGFP endocytosis was promoted. These results suggested that AAA ATPase activity of AipA is important for its function in endocytosis.


Assuntos
Aspergillus oryzae , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Sistemas de Transporte de Aminoácidos Básicos , Aspergillus oryzae/fisiologia , Endocitose , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641617

RESUMO

Identifying materials contributing to skin hydration, essential for normal skin homeostasis, has recently gained increased research interest. In this study, we investigated the potential benefits and mechanisms of action of Aspergillus oryzae-fermented wheat peptone (AFWP) on the proliferation and hydration of human skin keratinocytes, through in vitro experiments using HaCaT cell lines. The findings revealed that compared to unfermented wheat peptone, AFWP exhibited an improved amino acid composition, significantly (p < 0.05) higher DPPH scavenging capability and cell proliferation activity, and reduced lipopolysaccharide-induced NO production in RAW 264.7 cells. Furthermore, we separated AFWP into eleven fractions, each ≤2 kDa; of these, fraction 4 (AFW4) demonstrated the highest efficacy in the cell proliferation assay and was found to be the key component responsible for the cell proliferation potential and antioxidant properties of AFWP. Additionally, AFW4 increased the expression of genes encoding natural moisturizing factors, including filaggrin, transglutaminase-1, and hyaluronic acid synthase 1-3. Furthermore, AFW4 activated p44/42 MAPK, but not JNK and p38 MAPK, whereas PD98059, a p44/42 MAPK inhibitor, attenuated the beneficial effects of AFW4 on the skin, suggesting that the effects of AFW4 are mediated via p44/42 MAPK activation. Finally, in clinical studies, AFW4 treatment resulted in increased skin hydration and reduced trans-epidermal water loss compared with a placebo group. Collectively, these data provide evidence that AFW4 could be used as a potential therapeutic agent to improve skin barrier damage induced by external stresses.


Assuntos
Antioxidantes/administração & dosagem , Aspergillus oryzae/fisiologia , Queratinócitos/citologia , Peptonas/administração & dosagem , Creme para a Pele/administração & dosagem , Triticum/microbiologia , Adulto , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Óxido Nítrico/metabolismo , Peptonas/química , Peptonas/farmacologia , Células RAW 264.7 , Creme para a Pele/química , Creme para a Pele/farmacologia , Triticum/química , Adulto Jovem
3.
Fungal Biol ; 124(9): 801-813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32883430

RESUMO

Aspergillus oryzae can secrete large amounts of enzymes. However, the production of abundant secretory proteins triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), and it is not clear how ER-associated protein degradation (ERAD) contributes to bulk protein production in A. oryzae. Here we identified AoCdc48, the sole A. oryzae ortholog of Saccharomyces cerevisiae AAA+ ATPase Cdc48, a component of the ERAD machinery. We found that AoCdc48 localizes in both nuclei and cytoplasm. Generation of an Aocdc48 conditional mutant showed that Aocdc48 repression leads to reduced cell growth and aberrant hyphal morphology. When Aocdc48-repressed cells were cultured on starch-containing plates, the α-amylase-encoding gene amyB was about 1.3-fold higher expressed. Indeed, a halo produced by secreted amylase was seen on potato starch-containing plates even when there was almost no growth under Aocdc48 repression. Fluorescence microscopy revealed that although AmyB seemed to be secreted, various organelle distributions were aberrant in Aocdc48-repressed cells. We found that D1 AAA domain is crucial for cell viability. Finally, we show that Aocdc48-overexpression also causes defects of cell growth, colonial morphology and conidial formation. Collectively, our results suggest that AoCdc48 is essential for growth and organelle distribution but dispensable for amylase secretion.


Assuntos
Aspergillus oryzae , Degradação Associada com o Retículo Endoplasmático , Proteínas Fúngicas/genética , Proteína com Valosina/genética , Aspergillus oryzae/genética , Aspergillus oryzae/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/fisiologia , Proteína com Valosina/fisiologia
4.
Fungal Biol ; 124(8): 708-713, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690252

RESUMO

Aspergillus oryzae KB produces two ß-fructofuranosidases (F1 and F2). F1 has high transfructosylation activity (Ut) to produce fructooligosaccharides. F2 has high hydrolysis activity (Uh), releasing glucose and fructose. It is desirable to selectively produce F1, which can be used for production of fructooligosaccharides. Here, the relationship between filamentous pellet size and selective production of F1 in liquid culture was investigated. Our finding revealed that: (i) The mean particle size of pellets (5.88 ± 1.36 mm) was larger, and the ratio of Ut to Uh was improved (Ut/Uh = 5.0) in 10% sucrose medium compared with 1% sucrose medium (pellet size = 2.60 ± 0.37 mm; Ut/Uh = 0.96). (ii) The final culture pH of the 1% sucrose medium was 8.7; on controlling the pH of 1% sucrose medium at 5.0, increased pellet size (9.69 ± 2.01 mm) and Ut/Uh (7.8) were observed. (iii) When 3% glycerin was used as carbon source, the pellet size decreased to 1.09 ± 0.33 mm and Ut/Uh was 0.57. (iv) In medium containing 1% sucrose, the pellet size was dependent on the number of spores used in the culture inoculum, but, in these experiments, Ut/Uh was almost constant (1.05 ± 0.08). Collectively, the data show that the value of Ut/Uh is proportional to the pellet size when liquid culture of A. oryzae strain KB is performed in some conditions (such as in the presence of high sucrose concentration, low pH, or added Tween surfactant), but in other conditions Ut/Uh is independent of pellet size.


Assuntos
Aspergillus oryzae/fisiologia , Sacarose/metabolismo , beta-Frutofuranosidase/biossíntese , Aspergillus oryzae/classificação , Aspergillus oryzae/enzimologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Frutose/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Reação em Cadeia da Polimerase em Tempo Real , Tensoativos/administração & dosagem , beta-Frutofuranosidase/metabolismo
5.
Vet Parasitol ; 271: 57-63, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303205

RESUMO

The poultry red mite, Dermanyssus gallinae, is a blood-feeding ectoparasite that affects egg-laying hens worldwide. Strategies to control this parasite have focused in the use of entomopathogenic fungi, such as Metarhizium anisopliae. However, only a few studies have evaluated the use of Aspergillus oryzae to control D. gallinae and none of them have employed native strains. In the work presented here, a novel entomopathogenic fungus was isolated from a dead D. gallinae. The results of phylogenetic analysis showed 100% similarity between the isolated strain and those of two species, A. oryzae and Aspergillus flavus, and 99.82% similarity with A. parvisclerotigenus, which were in the same branch of the Flavi section of the genus Aspergillus. This entomopathogenic fungus was a non-aflatoxin B1 producer, as shown by the presence of aflatoxin B1 in the conidial infection suspension. Morphological features of fungus in comparison with A. oryzae and A. flavus indicated that the isolated strain belonged to A. oryzae, and was named Aspergillus sp. Dg-1. The pathogenicity of Aspergillus sp. Dg-1 on D. gallinae at different life stages was then assessed under laboratory conditions. The experiments showed that the isolated strain significantly increased the mortality rate in adult mites, up to 24.83 ± 2.25, compared to the mortality rates in the control group, which were 15.17 ± 2.75 (P < 0.05). However, Aspergillus sp. Dg-1 did not have pathogenic effects on the second nymph stage of D. gallinae. Our findings demonstrate that Aspergillus sp. Dg-1 has pathogenic effects on D. gallinae in their adult stage, presenting biocontrol potential against D. gallinae.


Assuntos
Aspergillus oryzae/fisiologia , Infestações por Ácaros/microbiologia , Controle Biológico de Vetores , Doenças das Aves Domésticas/terapia , Trombiculidae/microbiologia , Animais , Aspergillus oryzae/classificação , Aspergillus oryzae/genética , Aspergillus oryzae/patogenicidade , Estágios do Ciclo de Vida , Filogenia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia
6.
Gene ; 706: 106-114, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31039437

RESUMO

Biological significance of 18-carbon polyunsaturated fatty acids, γ-linolenic acid (GLA; C18:3 n-6) and dihomo-γ-linolenic acid (DGLA; C20:3 n-6) has gained much attention in the systematic development of optimized strains for industrial applications. In this work, a n-6 PUFAs-producing strain of Aspergillus oryzae was generated by manipulating metabolic reactions in fatty acid modification and triacylglycerol biosynthesis. The codon-optimized genes coding for Δ6-desaturase and Δ6-elongase of Pythium sp., and diacylglycerol acyltransferase 2 (mMaDGAT2) of Mortierella alpina were co-transformed in a single vector into A. oryzae BCC14614, yielding strain TD6E6-DGAT2. Comparative phenotypic analysis showed that a 70% increase of lipid titer was found in the engineered strain, which was a result of a significant increase in triacylglycerol (TAG) content (52.0 ±â€¯1.8% of total lipids), and corresponded to the increased size of lipid particles observed in the fungal cells. Interestingly, the proportions of GLA and DGLA in neutral lipids of the engineered strain were similar, with the highest titers obtained in the high C:N culture (29:0; 6% glucose) during the lipid-accumulating stage of growth. Time-course expression analysis of the engineered strain revealed transcriptional control of TAG biosynthesis through a co-operation between the native DGAT2 of A. oryzae and the transformed mMaDGAT2.


Assuntos
Aspergillus oryzae/metabolismo , Lipídeos/biossíntese , Engenharia Metabólica/métodos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido Araquidônico/biossíntese , Aspergillus oryzae/genética , Aspergillus oryzae/fisiologia , Vias Biossintéticas , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas Fúngicas/genética , Mortierella/genética , Triglicerídeos/biossíntese , Ácido gama-Linolênico/biossíntese
7.
Food Chem ; 271: 274-283, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236677

RESUMO

The objective of this work was to evaluate the effects the solid-state fermentation parameters of defatted soybean flour (DSF) by Monascus purpureus or Aspergillus oryzae on the bioactive compounds. Central composite rotatable design, multi-response optimization, and Pearson's correlation were used. The fermentation parameters as initial pH (X1), DSF-to-water ratio (X2), and incubation temperature (X3) were taken as independent variables. The function responses were isoflavone content, total phenolic content (TPC), and antioxidant activity. All fermentation parameters affected the isoflavone content when fermented by Monascus purpureus, whereas the TPC or antioxidant activities remained almost unchanged. For the fermentation by Aspergillus oryzae, all the function responses were influenced by X2 and X3 and were independent of the X1. Estimated optimum conditions were found as x1 = 6.0, x2 = 1:1, and x3 = 30 °C for both fungi. Achieving suitable fermentation parameters is essential to increase bioactive compounds in the DSF that makes it promising for food industrial applications.


Assuntos
Antioxidantes/metabolismo , Aspergillus oryzae/fisiologia , Fermentação , Manipulação de Alimentos/métodos , Monascus/fisiologia , Farinha , Glycine max
8.
J Gen Appl Microbiol ; 65(1): 34-38, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925746

RESUMO

At present, the quantitation of the mycelial weight of the industrially important non-pathogenic fungus Aspergillus oryzae, which is used for manufacturing koji, is performed by quantitating N-acetylglucosamine. However, since N-acetylglucosamine is a cell wall component, the extraction procedure is costly and tedious, and its quantitative performance is poor. Here, we report a novel method for the quantitation of A. oryzae mycelial weight. The amount of glycosylceramide significantly correlated with both the mycelial weight of A. oryzae and the amount of N-acetylglucosamine, an established index of the mycelial weight of A. oryzae in koji. This new method is simple and efficient and can be used in the brewing and food industries to determine the mycelial weight of A. oryzae.


Assuntos
Aspergillus oryzae/fisiologia , Glucosilceramidas/metabolismo , Micélio/química , Acetilglucosamina/metabolismo , Aspergillus oryzae/química , Aspergillus oryzae/crescimento & desenvolvimento , Fermentação , Micélio/crescimento & desenvolvimento
9.
Food Chem ; 272: 235-241, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309538

RESUMO

Black rice bran (BRB) was fermented in solid state using Aspergillus awamori and Aspergillus oryzae for 5 days at 30°C, and then the alcoholic extracts of the fermented BRB were examined in terms of phenolic acid composition and antioxidant activity (DPPH radical scavenging and tyrosinase inhibitory activity). A pre-treatment, moisturizing and autoclaving prior to the fermentation, decreased total phenolic content (TPC) by decomposing the anthocyanin in BRB, but the fermentation increased TPC. Protocatechuic acid and ferulic acid showed the most significant increases, reaching their maximum values by the fermentation for 3 days: 1660.6 µg/g for the extract of BRB fermented by A. awamori. The radical scavenging activity and tyrosinase inhibitory activity of the alcoholic extracts increased by the pre-treatment and fermentation, in accordance with the increase in phenolic acid content. The solid-state fermentation was an effective process to raise the phenolic acid content and antioxidant activity of the extract.


Assuntos
Antioxidantes/metabolismo , Aspergillus oryzae/fisiologia , Fermentação , Hidroxibenzoatos/química , Oryza/metabolismo , Oryza/microbiologia , Oxirredução
10.
Sci Rep ; 8(1): 16871, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442975

RESUMO

Aflatoxins (AFs) are a group of carcinogenic and immunosuppressive mycotoxins that threaten global food safety. Globally, over 4.5 billion people are exposed to unmonitored levels of AFs. Aspergillus flavus is the major source of AF contamination in agricultural crops. One approach to reduce levels of AFs in agricultural commodities is to apply a non-aflatoxigenic competitor, e.g., Afla-Guard, to crop fields. In this study, we demonstrate that the food fermenting Aspergillus oryzae M2040 strain, isolated from Korean Meju (a brick of dry-fermented soybeans), can inhibit aflatoxin B1 (AFB1) production and proliferation of toxigenic A. flavus in lab culture conditions and peanuts. In peanuts, 1% inoculation level of A. oryzae M2040 could effectively displace the toxigenic A. flavus and inhibit AFB1 production. Moreover, cell-free culture filtrate of A. oryzae M2040 effectively inhibited AFB1 production and A. flavus growth, suggesting A. oryzae M2040 secretes inhibitory compounds. Whole genome-based comparative analyses indicate that the A. oryzae M2040 and Afla-Guard genomes are 37.9 and 36.4 Mbp, respectively, with each genome containing ~100 lineage specific genes. Our study establishes the idea of using A. oryzae and/or its cell-free culture fermentate as a potent biocontrol agent to control A. flavus propagation and AF contamination.


Assuntos
Aflatoxinas/análise , Aspergillus flavus/química , Aspergillus oryzae/fisiologia , Agentes de Controle Biológico , Fermentação , Contaminação de Alimentos/prevenção & controle , Glycine max/metabolismo , Aspergillus oryzae/genética , Sistema Livre de Células , Família Multigênica , Filogenia , Sequenciamento Completo do Genoma
11.
Planta ; 248(3): 705-714, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948125

RESUMO

MAIN CONCLUSION: We provide evidence that Aspergillus oryzae not only acts as an endophyte in Raphanus sativus, but also works as a plant growth promoter and provides some protection against its herbivore, Plutella xylostella affecting its feeding rate, mortality and fitness parameters, thereby contributing to the pest population suppression. Seed inoculation of radish seeds with the fungus Aspergillus oryzae allowed its establishment as an endophyte promoting plant growth and negatively affecting fitness parameters of its major herbivore, diamondback moth, Plutella xylostella. Endophytic fungi may contribute to the growth of their host plants and enhance resistance to herbivores and diseases. We evaluated the effect of A. oryzae (Ahlburg) E. Cohn as an endophyte in radish (Raphanus sativus L.) on growth and development of the plants themselves and their major herbivore, the diamondback moth P. xylostella (L). A. oryzae colonization rates in leaves were significantly higher than in roots and stems, with a rate of 80% in leaves, 40% in stems and 20% in roots 1 week after seed inoculation. Colonization gradually decreased in the various plant tissues, and disappeared completely in roots, stems and leaves within 2, 5 and 7 weeks, respectively. A. oryzae did not affect seed germination; however, it promoted radish growth with endophytic plants attaining average heights of 116 mm compared to 99.6 mm in the controls at the third week post-inoculation. The P. xylostella fitness parameters, consumption, larval and pupal weights, and feeding on the endophytic plants were significantly lower than the controls, while larval mortality was significantly higher. Larvae fed on endophytic plants consumed 0.46 mg less leaf matter in the first week post seed inoculation and weighed 0.83 mg less as mature 4th instars than controls. We have demonstrated that A. oryzae can establish as an endophyte in R. sativus through seed inoculation providing some plant growth promotion and protection against its herbivore by increasing its mortality and negatively affecting its fitness parameters, suggesting that adopting seed treatments with A. oryzae may be beneficial in the commercial cultivation of radish.


Assuntos
Aspergillus oryzae/fisiologia , Endófitos/fisiologia , Mariposas/fisiologia , Doenças das Plantas/microbiologia , Raphanus/microbiologia , Animais , Herbivoria , Larva/fisiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Raphanus/crescimento & desenvolvimento
12.
World J Microbiol Biotechnol ; 34(2): 35, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29427255

RESUMO

The High osmolarity glycerol (HOG) gene family plays crucial roles in various developmental and physiological processes in fungi, such as the permeability of cell membrane, chlamydospore formation and stress signaling. Although the function of HOG genes has been investigated in Saccharomyces cerevisiae and some filamentous fungi, a comprehensive analysis of HOG gene family has not been performed in Aspergillus oryzae, a fungi mainly used for the production of soy sauce. In this study, we identified and corrected a total of 90 HOG genes from the A. oryzae genome. According to the phylogenetic relationship, they were divided into four discrete groups (Group A-D) comprising of 16, 24, 30 and 20 proteins, respectively. Six conserved motifs and exon-intron structures were examined among all HOG proteins to reveal the diversity of AoHOG genes. Based on transcriptome technology, the expression patterns of AoHOG genes across all developmental stages was identified, suggesting that the AoHOG gene family mainly functions in the logarithmic phase of development. The expression profiles of AoHOG genes under different concentrations of salt stress indicated that AoHOG genes are extensively involved in salt stress response, with possibly different mechanisms. The genome-wide identification, evolutionary, gene structures and expression analyses of AoHOG genes provide a comprehensive overview of this gene family as well as their potential involvements in development and stress responses. Our results will facilitate further research on HOG gene family regarding their physiological and biochemical functions.


Assuntos
Aspergillus oryzae/genética , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Estudo de Associação Genômica Ampla , Glicerol/metabolismo , Aspergillus oryzae/fisiologia , Evolução Molecular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Concentração Osmolar , Pressão Osmótica , Filogenia , Tolerância ao Sal , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
13.
J Gen Appl Microbiol ; 63(3): 172-178, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28484116

RESUMO

Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Marcação de Genes , Mutação , Micélio/crescimento & desenvolvimento , Aspergillus oryzae/fisiologia , Sistemas CRISPR-Cas , Deleção de Genes , Edição de Genes , Especificidade da Espécie
14.
Nutrients ; 8(7)2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27409632

RESUMO

Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is considered to have the potential to prevent chemically-induced carcinogenesis in multiple organs of rodents. In the present study, we evaluated the possible chemopreventive effects of FBRA against prostate tumorigenesis. Six-week-old male rats of the transgenic rat for adenocarcinoma of prostate (TRAP) strain were fed diets containing 5% or 10% FBRA for 15 weeks. Animals were sacrificed at 21 weeks of age, and the ventral and lateral prostate were removed for histopathological evaluation and immunoblot analyses. FBRA decreased the incidence of adenocarcinoma in the lateral prostate and suppressed the progression of prostate carcinogenesis. Treatment with FBRA induced apoptosis and inhibited cell proliferation in histologically high-grade prostatic intraepithelial neoplasias. Phospho-AMP-activated kinase α (Thr172) was up-regulated in the prostate of rats fed the diet supplemented with FBRA. These results indicate that FBRA controls tumor growth by activating pathways responsive to energy deprivation and suggest that FBRA has translational potential for the prevention of human prostate cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Ração Animal , Aspergillus oryzae/fisiologia , Fibras na Dieta/administração & dosagem , Fermentação , Oryza/microbiologia , Neoplasia Prostática Intraepitelial/prevenção & controle , Neoplasias da Próstata/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Metabolismo Energético , Ativação Enzimática , Heterozigoto , Masculino , Fosforilação , Próstata/metabolismo , Próstata/patologia , Neoplasia Prostática Intraepitelial/enzimologia , Neoplasia Prostática Intraepitelial/genética , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Fatores de Tempo
15.
Fungal Biol ; 120(5): 775-82, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109373

RESUMO

Filamentous fungi grow by organizing multicellularity through hyphal compartmentalization and cell fusion. SO (SOFT) protein, which was originally identified in Neurospora crassa, plays distinct functional roles in cell-to-cell interactions, such as septal plugging and cell fusion. We previously reported that AoSO, an Aspergillus oryzae SO homologue, forms aggregates at the septal pore in response to stress, as well as upon hyphal wounding. However, the functional regions that mediate the multicellular functions of AoSO, which is a large protein composed of 1195 amino acids, have not been elucidated. Here, we divided AoSO protein into regions according to amino acid sequence conservation among other fungal SO homologues. By heterologous expression of full-length and truncated forms of AoSO in the yeast Saccharomyces cerevisiae, the region responsible for the stress-induced aggregation of AoSO was identified to be between amino acids 556 and 1146. In A. oryzae, however, septal localization of AoSO aggregates required the 49 C-terminal amino acids. Thus, expression of only the C-terminal half of AoSO was sufficient for septal plugging and prevention of excessive cytoplasmic loss upon hyphal wounding. In contrast, the N-terminal half of AoSO, from amino acids 1 to 555, together with the C-terminal end, was revealed to be indispensable for cell fusion. Collectively, these findings suggest that the C-terminal half of AoSO, which mediates stress-induced aggregation, is required for both septal plugging and cell fusion, whereas the N-terminal half confers an additional functionality that is essential for cell fusion.


Assuntos
Aspergillus oryzae/fisiologia , Adesão Celular , Proteínas Fúngicas/metabolismo , Estresse Fisiológico , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
J Biosci Bioeng ; 121(4): 365-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26467693

RESUMO

The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Fúngicos/enzimologia , Esporos Fúngicos/fisiologia , Estresse Fisiológico , Aspergillus oryzae/genética , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Esporos Fúngicos/genética
17.
Fungal Genet Biol ; 85: 1-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26496881

RESUMO

Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes.


Assuntos
Aspergillus oryzae/fisiologia , Regulação Fúngica da Expressão Gênica , Resposta a Proteínas não Dobradas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Splicing de RNA , RNA Mensageiro/genética , Transdução de Sinais , alfa-Amilases/genética , alfa-Amilases/metabolismo
18.
Fungal Genet Biol ; 82: 136-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117687

RESUMO

In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed.


Assuntos
Amilases/metabolismo , Aspergillus oryzae/fisiologia , Endocitose , Proteínas de Transporte de Monossacarídeos/metabolismo , Transporte Biológico , Ativação Enzimática , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Espaço Intracelular/metabolismo , Maltose/metabolismo , Proteínas Recombinantes de Fusão , Ubiquitina-Proteína Ligases/metabolismo , alfa-Amilases/metabolismo
19.
Appl Microbiol Biotechnol ; 99(15): 6241-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25935344

RESUMO

Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.


Assuntos
Aspergillus oryzae/fisiologia , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Aspergillus oryzae/crescimento & desenvolvimento , Aspergillus oryzae/metabolismo , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
J Sci Food Agric ; 95(10): 2145-54, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25312834

RESUMO

BACKGROUND: Two kinds of soy sauces were prepared with Aspergillus oryzae koji (SSAO) and mixed koji (SSAOM, A. oryzae mouldstarter:Monascus purpureus mouldstarter = 1:2, w/w) respectively. The effects of mixed koji on the essential indices, oxygen radical absorption capacity, color indices, free amino acids and volatile compounds of soy sauce have been studied, followed by a sensory evaluation between SSAO and SSAOM. RESULTS: The contents of non-salt soluble solid, reducing sugar, total acid, total nitrogen and amino nitrogen in SSAOM increased by 21.50%, 9.88%, 15.35%, 5.98% and 41.43%, respectively, compared with the control SSAO, owing to the higher activities of acid protease and glucoamylase in the mixed koji. Moreover, SSAOM showed higher antioxidant activity, higher levels of free amino acids and much more attractive color. Meanwhile, flavor groups such as esters, aldehydes, pyrazines and sulfur-containing compounds in SSAOM were also improved. The contents of free amino acids and aroma compounds were consistent with the sensory evaluation. According to descriptive sensory analysis, SSAOM showed higher intensity for sweet and umami attributes; in addition, higher flowery, burnt, fruity and caramel-like attributes were perceived in SSAOM, while SSAO showed higher ethanolic and sour attributes. CONCLUSIONS: The investigated soy sauce prepared with mixed koji can be considered as an effective method to accelerate the fermentation process and improve the flavor of soy sauce.


Assuntos
Aspergillus oryzae/fisiologia , Manipulação de Alimentos/métodos , Monascus/fisiologia , Alimentos de Soja/análise , China , Fermentação , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA