Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
Clin Immunol ; 263: 110233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697554

RESUMO

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Animais , Células Matadoras Naturais/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Timoma/imunologia , Timoma/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Citotoxicidade Imunológica , Neoplasias do Timo/imunologia , Neoplasias do Timo/genética , Transdução de Sinais , Proteínas de Membrana , Antígenos de Histocompatibilidade Classe I
2.
Curr Med Sci ; 44(2): 261-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561595

RESUMO

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.


Assuntos
Ataxia Telangiectasia , Citocinas , Humanos , Citocinas/genética , Ataxia Telangiectasia/genética , Dano ao DNA , DNA/metabolismo , Transdução de Sinais
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686720

RESUMO

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Proteínas Nucleares , Humanos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Reparo do DNA , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/genética
4.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453233

RESUMO

Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Degenerações Espinocerebelares , Feminino , Humanos , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Mutação , Adolescente
5.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442018

RESUMO

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Assuntos
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribose , Humanos , RNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA , Ataxia Telangiectasia/genética , Reparo do DNA , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338943

RESUMO

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Melanoma/genética , Oncogenes , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
7.
DNA Repair (Amst) ; 135: 103647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377644

RESUMO

Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.


Assuntos
Ataxia Telangiectasia , Animais , Humanos , Criança , Ataxia Telangiectasia/genética , Cerebelo , Encéfalo , Dano ao DNA , DNA de Cadeia Simples
8.
Orphanet J Rare Dis ; 19(1): 67, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38360726

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS: Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS: People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION: Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Fenótipo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , RNA Mensageiro/metabolismo
9.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38280573

RESUMO

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Linfócitos B , Switching de Imunoglobulina , Humanos , Ataxia Telangiectasia/imunologia , Ataxia Telangiectasia/genética , Adulto , Adolescente , Masculino , Feminino , Pessoa de Meia-Idade , Criança , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linfócitos B/imunologia , Adulto Jovem , Idoso , Hipermutação Somática de Imunoglobulina , Pré-Escolar , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
10.
Cerebellum ; 23(2): 455-458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37036622

RESUMO

Ataxia-Telangiectasia (A-T) is an autosomal recessive neurodegenerative disease associated with cerebellar ataxia and extrapyramidal features. A-T has a complex and diverse phenotype with varying rates of disease progression. The development of robust natural history studies and therapeutic trials relies on the accurate recording of phenotype using relevant and validated severity of illness indexes. We compared the commonly used Scale for the Assessment and Rating of Ataxia (SARA) and the disease-specific A-T Neurological Examination Scale Toolkit (A-T NEST), in our adult A-T cohort. We found a strong correlation between A-T NEST and the established SARA score, validating the use of A-T NEST and SARA in capturing the natural history of A-T patients.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Doenças Neurodegenerativas , Adulto , Humanos , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Índice de Gravidade de Doença , Progressão da Doença
11.
Cerebellum ; 23(2): 502-511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37120494

RESUMO

Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.


Assuntos
Ataxia Telangiectasia , Pré-Escolar , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Córtex Cerebelar/metabolismo
12.
Redox Biol ; 69: 102988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096740

RESUMO

Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.


Assuntos
Arsenitos , Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Estresse Oxidativo/fisiologia , Fibroblastos/metabolismo , RNA , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
13.
Cell Rep ; 43(1): 113622, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159274

RESUMO

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Microglia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neurônios/metabolismo , Citocinas/metabolismo
14.
Stem Cell Res ; 73: 103247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976651

RESUMO

Ataxia-Telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutations in the ataxia-telangiectasia mutated (ATM) gene, resulting, among other symptoms, in neurological dysfunction. ATM is known to be a master controller of signal transduction for DNA damage response, with additional functions that are poorly understood. CRISPR/Cas9 technology was used to introduce biallelic mutations at selected sites of the ATM gene in human induced pluripotent stem cells (hiPSCs). This panel of hiPSCs with nonsense and missense mutations in ATM can help understand the molecular basis of A-T.


Assuntos
Ataxia Telangiectasia , Células-Tronco Pluripotentes Induzidas , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Proteínas de Ciclo Celular/genética
15.
Sci Rep ; 13(1): 19386, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938627

RESUMO

Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).


Assuntos
Ataxia Telangiectasia , Animais , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Genoma Viral , Transgenes , Genótipo , Terapia Genética
16.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37802069

RESUMO

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Retroelementos/genética , Mutação , Splicing de RNA/genética , Sítios de Splice de RNA , Íntrons
17.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681912

RESUMO

Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Animais , Camundongos , Ataxia Telangiectasia/genética , Reparo do DNA , Interneurônios , Neurônios , Humanos
19.
Expert Opin Investig Drugs ; 32(8): 693-704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622329

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is a life-limiting autosomal recessive disease characterized by cerebellar degeneration, ocular telangiectasias, and sinopulmonary disease. Since there is no cure for A-T, the standard of care is primarily supportive. AREAS COVERED: We review clinical trials available in PubMed from 1990 to 2023 focused on lessening A-T disease burden. These approaches include genetic interventions, such as antisense oligonucleotides, designed to ameliorate disease progression in patients with select mutations. These approaches also include pharmacologic treatments that target oxidative stress, inflammation, and mitochondrial exhaustion, to attenuate neurological progression in A-T. Finally, we discuss the use of biological immunotherapies for the treatment of malignancies and granulomatous disease, along with other supportive therapies being used for the treatment of pulmonary disease and metabolic syndrome. EXPERT OPINION: Barriers to successful genetic and pharmacologic interventions in A-T include the need for personalized treatment approaches based on patient-specific ATM mutations and phenotypes, lack of an animal model for the neurologic phenotype, and extreme rarity of disease making large-scale randomized trials difficult to perform. Ongoing efforts are needed to diagnose patients earlier, discover more effective therapies, and include more individuals in clinical trials, with the goal to lessen disease burden and to find a cure for patients with A-T.


Assuntos
Ataxia Telangiectasia , Pneumopatias , Animais , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Ataxia Telangiectasia/metabolismo , Mutação , Estresse Oxidativo , Fenótipo
20.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA