Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Comput Methods Programs Biomed ; 250: 108163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626559

RESUMO

BACKGROUND: Metabolomics, the study of substrates and products of cellular metabolism, offers valuable insights into an organism's state under specific conditions and has the potential to revolutionise preventive healthcare and pharmaceutical research. However, analysing large metabolomics datasets remains challenging, with available methods relying on limited and incompletely annotated metabolic pathways. METHODS: This study, inspired by well-established methods in drug discovery, employs machine learning on metabolite fingerprints to explore the relationship of their structure with responses in experimental conditions beyond known pathways, shedding light on metabolic processes. It evaluates fingerprinting effectiveness in representing metabolites, addressing challenges like class imbalance, data sparsity, high dimensionality, duplicate structural encoding, and interpretable features. Feature importance analysis is then applied to reveal key chemical configurations affecting classification, identifying related metabolite groups. RESULTS: The approach is tested on two datasets: one on Ataxia Telangiectasia and another on endothelial cells under low oxygen. Machine learning on molecular fingerprints predicts metabolite responses effectively, and feature importance analysis aligns with known metabolic pathways, unveiling new affected metabolite groups for further study. CONCLUSION: In conclusion, the presented approach leverages the strengths of drug discovery to address critical issues in metabolomics research and aims to bridge the gap between these two disciplines. This work lays the foundation for future research in this direction, possibly exploring alternative structural encodings and machine learning models.


Assuntos
Aprendizado de Máquina , Metabolômica , Metabolômica/métodos , Humanos , Linhagem Celular , Ataxia Telangiectasia/metabolismo , Hipóxia Celular/fisiologia
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686720

RESUMO

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Proteínas Nucleares , Humanos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Reparo do DNA , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/genética
3.
Orphanet J Rare Dis ; 19(1): 67, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38360726

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS: Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS: People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION: Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Fenótipo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , RNA Mensageiro/metabolismo
4.
Redox Biol ; 69: 102988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096740

RESUMO

Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.


Assuntos
Arsenitos , Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Estresse Oxidativo/fisiologia , Fibroblastos/metabolismo , RNA , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
5.
Exp Clin Endocrinol Diabetes ; 131(12): 676-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38056492

RESUMO

BACKGROUND: Clinical observation suggests the atheroprotective effect of chloroquine and its derivatives, while its mechanism remains unclear. This study aimed to observe the protective effect of chloroquine against atherosclerosis and explore the underlying mechanism. METHODS: Ataxia telangiectasia mutated (ATM) wild-type or haploinsufficient apolipoprotein-E-knockout (ATM+/+ApoE-/- or ATM+/-ApoE-/-) mice were treated with different dosages of chloroquine. Anti-CD25 antibody was used to deplete natural Tregs in ATM+/+ApoE-/- mice. The atherosclerotic burden in different groups of mice was comprehensively evaluated by H&E staining and Masson staining. The effect of chloroquine on the regulatory T cells (Tregs) was assessed in vivo and in vitro by flow cytometry and immunohistochemical staining. The expression of related proteins was detected by real-time polymerase chain reaction and western blotting. RESULTS: In ATM+/+ApoE-/- mice, chloroquine alleviated atherosclerotic lesions, stabilized the plaque, and increased Treg counts in the atherosclerotic lesions and spleens. However, in ATM haploinsufficient mice (ATM+/-ApoE-/-), chloroquine no longer prevented atherosclerosis or impacted Treg counts. Abolishing Treg cells using an anti-CD25 antibody in vivo abrogated the atheroprotective effect of chloroquine. In vitro, chloroquine promoted the differentiation of Tregs from naïve T cells, which was accompanied by enhanced ATM/AMP-activated protein kinase (AMPK) activity and reduced downstream mammalian target of rapamycin (mTOR) activity. DISCUSSION: These findings suggest that chloroquine ameliorates atherosclerosis and stabilizes plaque by modulating Tregs differentiation through the regulation of the ATM/AMPK/mTOR pathway.


Assuntos
Ataxia Telangiectasia , Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Cloroquina/farmacologia , Cloroquina/metabolismo , Cloroquina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Camundongos Knockout para ApoE , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Mamíferos/metabolismo
6.
Expert Opin Investig Drugs ; 32(8): 693-704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622329

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is a life-limiting autosomal recessive disease characterized by cerebellar degeneration, ocular telangiectasias, and sinopulmonary disease. Since there is no cure for A-T, the standard of care is primarily supportive. AREAS COVERED: We review clinical trials available in PubMed from 1990 to 2023 focused on lessening A-T disease burden. These approaches include genetic interventions, such as antisense oligonucleotides, designed to ameliorate disease progression in patients with select mutations. These approaches also include pharmacologic treatments that target oxidative stress, inflammation, and mitochondrial exhaustion, to attenuate neurological progression in A-T. Finally, we discuss the use of biological immunotherapies for the treatment of malignancies and granulomatous disease, along with other supportive therapies being used for the treatment of pulmonary disease and metabolic syndrome. EXPERT OPINION: Barriers to successful genetic and pharmacologic interventions in A-T include the need for personalized treatment approaches based on patient-specific ATM mutations and phenotypes, lack of an animal model for the neurologic phenotype, and extreme rarity of disease making large-scale randomized trials difficult to perform. Ongoing efforts are needed to diagnose patients earlier, discover more effective therapies, and include more individuals in clinical trials, with the goal to lessen disease burden and to find a cure for patients with A-T.


Assuntos
Ataxia Telangiectasia , Pneumopatias , Animais , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Ataxia Telangiectasia/metabolismo , Mutação , Estresse Oxidativo , Fenótipo
7.
J Neurochem ; 166(4): 654-677, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37319113

RESUMO

Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células de Purkinje/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Serina-Treonina Quinases/genética , Dano ao DNA/genética , Proteínas de Ciclo Celular/genética
8.
Aging Cell ; 22(8): e13869, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254625

RESUMO

The genetic disorder, ataxia-telangiectasia (A-T), is caused by loss of the homeostatic protein kinase, ATM, and combines genome instability, tissue degeneration, cancer predisposition, and premature aging. Primary fibroblasts from A-T patients exhibit premature senescence when grown at ambient oxygen concentration (21%). Here, we show that reducing oxygen concentration to a physiological level range (3%) dramatically extends the proliferative lifespan of human A-T skin fibroblasts. However, they still undergo senescence earlier than control cells grown under the same conditions and exhibit high genome instability. Comparative RNA-seq analysis of A-T and control fibroblasts cultured at 3% oxygen followed by cluster analysis of differentially expressed genes and functional enrichment analysis, revealed distinct transcriptional dynamics in A-T fibroblasts senescing in physiological oxygen concentration. While some transcriptional patterns were similar to those observed during replicative senescence of control cells, others were unique to the senescing A-T cells. We observed in them a robust activation of interferon-stimulated genes, with undetected expression the interferon genes themselves. This finding suggests an activation of a non-canonical cGAS-STING-mediated pathway, which presumably responds to cytosolic DNA emanating from extranuclear micronuclei detected in these cells. Senescing A-T fibroblasts also exhibited a marked, intriguely complex alteration in the expression of genes associated with extracellular matrix (ECM) remodeling. Notably, many of the induced ECM genes encode senescence-associated secretory phenotype (SASP) factors known for their paracrine pro-fibrotic effects. Our data provide a molecular dimension to the segmental premature aging observed in A-T patients and its associated symptoms, which develop as the patients advance in age.


Assuntos
Senilidade Prematura , Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Oxigênio/metabolismo , Células Cultivadas , Senescência Celular , Fibroblastos/metabolismo , Instabilidade Genômica
9.
Shock ; 60(1): 100-109, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141173

RESUMO

ABSTRACT: Background: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. Methods: We used LPS to induce BBB disruption in vivo and to establish an in vitro model of cerebrovascular endothelial cells. Blood-brain barrier disruption was assessed by measuring Evans blue leakage and expression of vascular permeability regulators. To investigate the role of ATM, its inhibitor AZD1390 and clinically approved doxorubicin, an anthracycline that can activate ATM, were administered as scheduled. To explore the underlying mechanism, protein kinase B (AKT) inhibitor MK-2206 was administered to block the AKT/dynamin-related protein 1 (DRP1) pathway. Results: Lipopolysaccharide challenge induced significant BBB disruption, ATM activation, and mitochondrial translocation. Inhibiting ATM with AZD1390 aggravated BBB permeability as well as the following neuroinflammation and neuronal injury, while activation of ATM by doxorubicin abrogated these defects. Further results obtained in brain microvascular endothelial cells showed that ATM inhibition reduced the phosphorylation of DRP1 at serine (S) 637, promoted excessive mitochondrial fission, and resulted in mitochondrial malfunction. By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.


Assuntos
Ataxia Telangiectasia , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Ataxia Telangiectasia/metabolismo , Células Endoteliais/metabolismo , Fosforilação , Homeostase , Dinaminas , Doxorrubicina/metabolismo , Dinâmica Mitocondrial
10.
J Biol Chem ; 299(5): 104656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990216

RESUMO

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.


Assuntos
Alelos , Ataxia Telangiectasia , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação , Temperatura , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Reparo do DNA/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica/genética , Estabilidade Proteica , Cromatina/genética , Cromatina/metabolismo , Especificidade por Substrato
11.
Toxicology ; 484: 153397, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526012

RESUMO

Ataxia telangiectasia mutated (ATM) is a pivotal sensor during the DNA damage response that slows cell passage through the cell cycle checkpoints to facilitate DNA repair, and liver fibrosis is an irreversible pathological consequence of the sustained wound-healing process, However, the effects of ATM on the development of liver fibrosis are still not fully understood. Therefore, the aim of the study was to investigate the effects and potential mechanisms of ATM on the progression of liver fibrosis. Wild-type and ATM-deficient were administered with carbon tetrachloride (CCl4, 5 ml/kg, i.p.) for 8 weeks to induce liver fibrosis, and the liver tissues and serum were collected for analysis. KU-55933 (10 µM) was used to investigate the effects of ATM blockage on CCl4-induced hepatocyte injury in vitro. The results showed that ATM deficiency aggravated the increased serum transaminase levels and liver MDA, HYP, and 8-OHdG contents compared with the model group (p < 0.05). Sirius red staining showed that ATM deficiency exacerbated liver collagen deposition in vivo, which was associated with the activation of TGF-ß1/Smad2 signaling. Furthermore, blocking ATM with KU-55933 exacerbated the production of ROS and DNA damage caused by CCl4 exposure in HepG2 cells, and KU-55933 treatment also reversed the downregulated expression of CDK1 and CDK2 after CCl4 exposure in vitro. Moreover, the loss of ATM perturbed the regulation of the hepatic cell ChK2-CDC25A/C-CDK1/2 cascade and apoptosis in vivo, which was accompanied by increased Ki67-positive and TUNEL-positive cells after chronic CCl4 treatment. In conclusion, our results indicated that ATM might be a critical regulator of liver fibrosis progression, and the underlying mechanisms of exacerbated liver fibrosis development in ATM-deficient mice might be associated with the dysregulation of hepatic cell proliferation and apoptosis.


Assuntos
Ataxia Telangiectasia , Tetracloreto de Carbono , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Cirrose Hepática/metabolismo , Fígado , Fator de Crescimento Transformador beta1/metabolismo , Hepatócitos/metabolismo , Células Estreladas do Fígado
12.
Am J Pathol ; 193(1): 27-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309105

RESUMO

Inadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid. Rifampicin and monocrotaline can cause liver failure in people. This regimen resulted in hepatic oxidative stress, necrosis, DNA double-strand breaks, liver test abnormalities, altered serum cytokine expression, and mortality. Healthy donor hepatocytes were transplanted ectopically in the peritoneal cavity to study whether they could supply metabolic support and rebalance inflammatory or protective cytokines affecting liver regeneration events. Hepatocyte transplantation increased candidate cytokine levels (granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-10, and IL-12), leading to Atm, Stat3, and Akt signaling in hepatocytes and nonparenchymal cells, lowering of inflammation, and improvements in intermediary metabolism, DNA repair, and hepatocyte proliferation. Such control of DNA damage and inflammation, along with stimulation of hepatic growth, offers paradigms for cell signaling to restore hepatic homeostasis and regeneration in acute liver failure. Further studies of molecular pathways of high pathobiological impact will advance the knowledge of liver regeneration.


Assuntos
Ataxia Telangiectasia , Falência Hepática Aguda , Ratos , Humanos , Animais , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Monocrotalina/metabolismo , Rifampina/metabolismo , Citocinas/metabolismo , Falência Hepática Aguda/metabolismo , Fígado/metabolismo , Regeneração Hepática/fisiologia , Hepatócitos/patologia , Ratos Endogâmicos F344 , Inflamação/patologia
13.
Cell Mol Life Sci ; 79(12): 601, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36422718

RESUMO

Ataxia telangiectasia is a rare neurodegenerative disease caused by biallelic mutations in the ataxia telangiectasia mutated gene. No cure is currently available for these patients but positive effects on neurologic features in AT patients have been achieved by dexamethasone administration through autologous erythrocytes (EryDex) in phase II and phase III clinical trials, leading us to explore the molecular mechanisms behind the drug action. During these investigations, new ATM variants, which originated from alternative splicing of ATM messenger, were discovered, and detected in vivo in the blood of AT patients treated with EryDex. Some of the new ATM variants, alongside an in silico designed one, were characterized and examined in AT fibroblast cell lines. ATM variants were capable of rescuing ATM activity in AT cells, particularly in the nuclear role of DNA DSBs recognition and repair, and in the cytoplasmic role of modulating autophagy, antioxidant capacity and mitochondria functionality, all of the features that are compromised in AT but essential for neuron survival. These outcomes are triggered by the kinase and further functional domains of the tested ATM variants, that are useful for restoring cellular functionality. The in silico designed ATM variant eliciting most of the functionality recover may be exploited in gene therapy or gene delivery for the treatment of AT patients.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Processamento Alternativo
14.
J Pharmacol Exp Ther ; 383(1): 91-102, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137710

RESUMO

Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT: Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Neoplasias Encefálicas , Glioblastoma , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
15.
Pharmacol Rep ; 74(5): 1041-1053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989399

RESUMO

BACKGROUND: Kidney ischemia reperfusion injury (IRI) is characterized by tubular cell death. DNA double-strand breaks is one of the major sources of tubular cell death induced by IRI. 2-Mercaptoethanol (2-ME) is protective against DNA double-strand breaks derived from calf thymus and bovine embryo. Here, we sought to determine whether treatment with 2-ME attenuated DNA double-strand breaks, resulting in reduced kidney dysfunction and structural damage in IRI. METHODS: Kidney IRI or sham-operation in mice was carried out. The mice were treated with 2-ME, Ras-selective lethal 3, or vehicle. Kidney function, tubular injury, DNA damage, antioxidant enzyme expression, and DNA damage response (DDR) kinases activation were assessed. RESULTS: Treatment with 2-ME significantly attenuated kidney dysfunction, tubular injury, and DNA double-strand breaks after IRI. Among DDR kinases, IRI induced phosphorylation of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR), but IRI reduced phosphorylation of other DDR kinases including ataxia telangiectasia and Rad3 related, checkpoint kinase 1 (Chk1), Chk2, and Chinese hamster cells 1 (XRCC1). Treatment with 2-ME enhanced phosphorylation of ATM and ATM-mediated effector kinases in IRI-subjected kidneys, suggesting that 2-ME activates ATM-mediated DDR signaling pathway. Furthermore, 2-ME dramatically upregulated glutathione peroxidase 4 (GPX4) in IRI-subjected kidneys. Inhibition of GPX4 augmented adverse IRI consequences including kidney dysfunction, tubular injury, DNA double-strand breaks, and inactivation of ATM-mediated DDR signaling pathway after IRI in 2-ME-treated kidneys. CONCLUSIONS: We have demonstrated that exogenous 2-ME protects against DNA double-strand breaks after kidney IRI through GPX4 upregulation and ATM activation.


Assuntos
Ataxia Telangiectasia , Traumatismo por Reperfusão , Bovinos , Animais , Camundongos , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Mercaptoetanol/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Ataxia Telangiectasia/metabolismo , Antioxidantes/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Dano ao DNA , Fosforilação , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Rim/metabolismo , DNA/metabolismo , Isquemia/metabolismo , Proteínas de Ciclo Celular/genética
16.
Ageing Res Rev ; 79: 101653, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644374

RESUMO

Ataxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process. This review outlines the current state of knowledge pertaining to the molecular and cellular signatures of aging in A-T and proposes how these new insights can guide novel therapeutic approaches for A-T.


Assuntos
Senilidade Prematura , Envelhecimento , Ataxia Telangiectasia , Envelhecimento/genética , Envelhecimento/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Instabilidade Genômica , Humanos
17.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L581-L592, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196880

RESUMO

Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.


Assuntos
Ataxia Telangiectasia , Vírus da Influenza A , Influenza Humana , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células Epiteliais/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2 , Camundongos , Camundongos Knockout
18.
Front Immunol ; 13: 791522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154108

RESUMO

Ataxia-telangiectasia (A-T) is a neurodegenerative and primary immunodeficiency disorder (PID) characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classical ataxia-telangiectasia (classical A-T) phenotype, a variant phenotype (variant A-T) exists with partly overlapping but some distinctive disease characteristics. Here we present a case series of 6 patients with classical A-T and variant A-T, which illustrates the phenotypic variability of A-T that can present in childhood with prominent extrapyramidal features, with or without cerebellar ataxia. We report the clinical data, together with a detailed genotype description, immunological analyses, and related expression of the ATM protein. We show that the presence of some residual ATM kinase activity leads to the clinical phenotype variant A-T that differs from the classical A-T. Our data illustrate that the diagnosis of the variant form of A-T can be delayed and difficult, while early recognition of the variant form as well as the classical A-T is a prerequisite for providing a correct prognosis and appropriate rehabilitation and support, including the avoidance of diagnostic X-ray procedures, given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Transtornos dos Movimentos/diagnóstico , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Ataxia Telangiectasia/imunologia , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Criança , Pré-Escolar , Estudos Transversais , Diagnóstico Tardio , Diagnóstico Diferencial , Feminino , Testes Genéticos/métodos , Genótipo , Humanos , Masculino , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Fenótipo , Estudos Retrospectivos , Adulto Jovem
19.
Glia ; 70(3): 536-557, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854502

RESUMO

Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.


Assuntos
Ataxia Telangiectasia , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Microglia/metabolismo , Neurônios/metabolismo
20.
Stem Cell Res ; 58: 102618, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915311

RESUMO

Ataxia telangiectasia mutated (ATM) plays an essential role in DNA damage response and the maintenance of genomic stability. However, the role of ATM in regulating the function of adult neural stem cells (NSCs) remains unclear. Here we report that ATM deficiency led to accumulated DNA damage and decreased DNA damage repair capacity in neural progenitor cells. Moreover, we observed ATM ablation lead to the short-term increase of proliferation of neural progenitor cells, resulting in the depletion of the NSC pool over time, and this loss of NSC quiescence resulted in accelerated cell senescence. We further apply RNA sequencing to unravel that ATM knockout significantly affected Notch signaling pathway, furthermore, notch activation inhibit the abnormal increased proliferation of ATM-/- NSCs. Taken together, these findings indicate that ATM can serve as a key regulator for the normal function of adult NSCs by maintaining their stemness and preventing cellular senescence primarily through Notch signaling pathway.


Assuntos
Células-Tronco Adultas , Ataxia Telangiectasia , Células-Tronco Neurais , Células-Tronco Adultas/metabolismo , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Senescência Celular , Humanos , Ventrículos Laterais , Células-Tronco Neurais/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA