Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673939

RESUMO

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Assuntos
Ataxina-7 , Dependovirus , Modelos Animais de Doenças , Peptídeos , Fenótipo , RNA Interferente Pequeno , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Peptídeos/genética , Dependovirus/genética , Camundongos , Ataxina-7/genética , Ataxina-7/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , RNA Interferente Pequeno/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Camundongos Transgênicos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Terapia Genética/métodos , Alelos
2.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943575

RESUMO

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Assuntos
Disfunção Cognitiva , Oxigenoterapia Hiperbárica , Peptídeos , Ataxias Espinocerebelares , Camundongos , Masculino , Feminino , Animais , Oxigenoterapia Hiperbárica/métodos , Doenças Neuroinflamatórias , Disfunção Cognitiva/terapia , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/tratamento farmacológico
3.
Biomolecules ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37238658

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.


Assuntos
Cerebelo , Ataxias Espinocerebelares , Humanos , Cerebelo/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxina-1/genética , Ataxina-1/metabolismo , Células de Purkinje/patologia
4.
J Neurol ; 270(8): 3788-3798, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37076599

RESUMO

OBJECTIVE: There currently is no disease-modifying therapy for spinocerebellar ataxia type 1 (SCA1). Genetic interventions, such as RNA-based therapies, are being developed but those currently available are very expensive. Early evaluation of costs and benefits is, therefore, crucial. By developing a health economic model, we aimed to provide first insights into the potential cost-effectiveness of RNA-based therapies for SCA1 in the Netherlands. METHODS: We simulated disease progression of individuals with SCA1 using a patient-level state-transition model. Five hypothetical treatment strategies with different start and endpoints and level of effectiveness (5-50% reduction in disease progression) were evaluated. Consequences of each strategy were measured in terms of quality-adjusted life years (QALYs), survival, healthcare costs, and maximum costs to be cost effective. RESULTS: Most QALYs (6.68) are gained when therapy starts during the pre-ataxic stage and continues during the entire disease course. Incremental costs are lowest (- €14,048) if therapy is stopped when the severe ataxia stage is reached. The maximum costs per year to be cost-effective are €19,630 in the "stop after moderate ataxia stage" strategy at 50% effectiveness. DISCUSSION: Our model indicates that the maximum price for a hypothetical therapy to be cost-effective is considerably lower than currently available RNA-based therapies. Most value for money can be gained by slowing progression in the early and moderate stages of SCA1 and by stopping therapy upon entering the severe ataxia stage. To allow for such a strategy, it is crucial to identify individuals in early stages of disease, preferably just before symptom onset.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Modelos Econômicos , Progressão da Doença , Países Baixos , Análise Custo-Benefício
5.
Neural Netw ; 162: 541-556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023628

RESUMO

Computational neural network modelling is an emerging approach for optimization of drug treatment of neurological disorders and fine-tuning of rehabilitation strategies. In the current study, we constructed a cerebello-thalamo-cortical computational neural network model to simulate a mouse model of cerebellar ataxia (pcd5J mice) by manipulating cerebellar bursts through reduction of GABAergic inhibitory input. Cerebellar output neurons were projected to the thalamus and bidirectionally connected with the cortical network. Our results showed that reduction of inhibitory input in the cerebellum orchestrated the cortical local field potential (LFP) dynamics to generate specific motor outputs of oscillations of the theta, alpha, and beta bands in the computational model as well as in mouse motor cortical neurons. The therapeutic potential of deep brain stimulation (DBS) was tested in the computational model by increasing the sensory input to restore cortical output. Ataxia mice showed normalization of the motor cortex LFP after cerebellum DBS. We provide a novel approach to computational modelling to investigate the effect of DBS by mimicking cerebellar ataxia involving degeneration of Purkinje cells. Simulated neural activity coincides with findings from neural recordings of ataxia mice. Our computational model could thus represent cerebellar pathologies and provide insight into how to improve disease symptoms by restoring neuronal electrophysiological properties using DBS.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Camundongos , Animais , Ataxia Cerebelar/terapia , Cerebelo/fisiologia , Ataxias Espinocerebelares/terapia , Células de Purkinje , Ataxia
6.
Fortschr Neurol Psychiatr ; 91(4): 147-152, 2023 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-36806180

RESUMO

Ataxias are progressive diseases that are usually the result of cerebellar degeneration. Ataxias are divided into genetic, sporadic degenerative and acquired (secondary) forms. While there are established therapies for acquired (secondary) ataxias, genetic and sporadic degenerative ataxias are currently not medically treatable. For these ataxias, the development of somatic gene therapies is a promising avenue. The goals of gene therapies for genetic ataxias are to inactivate deleterious genes by gene silencing or to replace or correct a non-functional gene. Another option, which may also be considered for sporadic degenerative ataxias, are therapies that involve transferring new or modified genes. Gene therapies are being actively developed for the more common ataxias, such as Friedreich's ataxia, certain spinocerebellar ataxias, and multiple system atrphy, and initial phase I trials are underway.


Assuntos
Ataxia de Friedreich , Ataxias Espinocerebelares , Humanos , Ataxia/terapia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Terapia Genética
7.
Sci Rep ; 12(1): 20285, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434031

RESUMO

SCAs are autosomal dominant neurodegenerative disorders caused by a gain-of-function protein with toxic activities, containing an expanded polyQ tract in the coding region. There are no treatments available to delay the onset, stop or slow down the progression of these pathologies. In this work we focus our attention on SCA1 which is one of the most common genotypes circulating in Italy. Here, we develop a CRISPR/Cas9-based approach to reduce both forms of the ATXN1 protein, normal and mutated with expanded polyQ. We started with the screening of 10 different sgRNAs able to target Exon 8 of the ATXN1 gene. The two most promising sgRNAs were validated in fibroblasts isolated from SCA1 patients, following the identification of the best transfection method for this type of cell. Our silencing approach significantly downregulated the expression of ataxin1, due to large deletions and the introduction of small changes in the ATXN1 gene, evidenced by NGS analysis, without major effects on cell viability. Furthermore, very few significant guide RNA-dependent off-target effects were observed. These preliminary results not only allowed us to identify the best transfection method for SCA1 fibroblasts, but strongly support CRISPR/Cas9 as a promising approach for the treatment of expanded polyQ diseases. Further investigations will be needed to verify the efficacy of our silencing system in SCA1 neurons and animal models.


Assuntos
Ataxias Espinocerebelares , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Mutação com Ganho de Função , Sistemas CRISPR-Cas , Ataxina-1/genética , Ataxina-1/metabolismo , Itália
9.
Neurochem Int ; 157: 105357, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525394

RESUMO

Polyglutamine (PolyQ) diseases are a group of inherited neurodegenerative diseases including Huntington's disease and several types of spinocerebellar ataxias, which are caused by aggregation and accumulation of the disease-causative proteins with an abnormally expanded PolyQ stretch. Extracellular vesicles (EVs) are membrane particles that are released from cells, including exosomes, microvesicles, and other extracellular particles. Recent studies have suggested that the PolyQ proteins, which are the disease-causative proteins of PolyQ diseases, and its aggregates are secreted via EVs, similar to the aggregation-prone proteins associated with other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The PolyQ proteins that are secreted from cells can transmit intercellularly, which may contribute to pathological propagation of the PolyQ protein aggregates in patient brain, and therefore, the pathological roles of EVs in the onset and progression of PolyQ diseases has attracted much attention. EVs may also mediate intercellular transfer of heat shock proteins and other neuroprotective factors, which are beneficial for protein homeostasis and cell survival, and thus, have therapeutic potential for the neurodegenerative diseases including PolyQ diseases. Furthermore, because EVs contain not only the disease-associated proteins, but also various proteins, miRNAs and other components, and changes in the levels of these contents might reflect pathological changes, EVs derived from blood, cerebrospinal fluid, and urine would be a potential source of minimally invasive diagnostic biomarkers that report disease-associated changes in PolyQ diseases. In this review, we summarize the current understanding of the pathological roles of EVs in PolyQ diseases, and therapeutic and diagnostic potential of EVs for these diseases. Elucidation of the pathological and physiological roles of EVs would lead to identification of a proper therapeutic target that would not interfere the protective roles of EVs for cell survival but suppress pathological propagation of the disease-causative proteins in PolyQ disease.


Assuntos
Vesículas Extracelulares , Ataxias Espinocerebelares , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
10.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170431

RESUMO

Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.


Assuntos
Drosophila , Treino Aeróbico/métodos , Ataxias Espinocerebelares/terapia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Exercício Físico , Humanos , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Expansão das Repetições de Trinucleotídeos
11.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008978

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.


Assuntos
Predisposição Genética para Doença , Proteínas de Choque Térmico/genética , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Doenças Neurodegenerativas/etiologia , Fenótipo , Ataxias Espinocerebelares/congênito , Alelos , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Gerenciamento Clínico , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/metabolismo , Espasticidade Muscular/terapia , Mutação , Doenças Neurodegenerativas/diagnóstico , Domínios e Motivos de Interação entre Proteínas , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
12.
Expert Rev Neurother ; 22(2): 101-114, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35081319

RESUMO

INTRODUCTION: Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that dramatically affect the lives of affected individuals and their families. Despite having a clear understanding of SCA's etiology, there are no current symptomatic or neuroprotective treatments approved by the FDA. AREAS COVERED: Research efforts have greatly expanded the possibilities for potential treatments, including both pharmacological and non-pharmacological interventions. Great attention is also being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting. This review article will address the current advances in the treatment of SCA and what potential interventions are on the horizon. EXPERT OPINION: SCA is a highly complex and multifaceted disease family with the majority of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the pre-symptomatic stage is increasingly promising.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
13.
Cereb Cortex ; 32(3): 455-466, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34240142

RESUMO

Clinical studies have shown the efficacy of transcranial magnetic stimulation in treating movement disorders in patients with spinocerebellar ataxia (SCA). However, whether similar effects occur for their speech motor disorders remains largely unknown. The present event-related potential study investigated whether and how abnormalities in auditory-vocal integration associated with SCA can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the right cerebellum. After receiving active or sham cerebellar c-TBS, 19 patients with SCA were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted by ±200 cents. Behaviorally, active cerebellar c-TBS led to smaller magnitudes of vocal compensations for pitch perturbations than sham stimulation. Parallel modulatory effects were also observed at the cortical level, as reflected by increased P1 and P2 responses but decreased N1 responses elicited by active cerebellar c-TBS. Moreover, smaller magnitudes of vocal compensations were predicted by larger amplitudes of cortical P1 and P2 responses. These findings provide the first neurobehavioral evidence that c-TBS over the right cerebellum produces modulatory effects on abnormal auditory-motor integration for vocal pitch regulation in patients with SCA, offering a starting point for the treatment of speech motor disorders associated with SCA with cerebellar c-TBS.


Assuntos
Ataxias Espinocerebelares , Estimulação Magnética Transcraniana , Cerebelo/fisiologia , Retroalimentação Sensorial/fisiologia , Humanos , Fala/fisiologia , Ataxias Espinocerebelares/terapia , Ritmo Teta
14.
Cerebellum ; 21(4): 623-631, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34410614

RESUMO

Spinocerebellar ataxia 38 (SCA 38) is an autosomal dominant disorder caused by conventional mutations in the ELOVL5 gene which encodes an enzyme involved in the synthesis of very long fatty acids, with a specific expression in cerebellar Purkinje cells. Three Italian families carrying the mutation, one of which is of Sardinian descent, have been identified and characterized. One session of cerebellar intermittent theta burst stimulation (iTBS) was applied to 6 affected members of the Sardinian family to probe motor cortex excitability measured by motor-evoked potentials (MEPs). Afterwards, patients were exposed to ten sessions of cerebellar real and sham iTBS in a cross-over study and clinical symptoms were evaluated before and after treatment by Modified International Cooperative Ataxia Rating Scale (MICARS). Moreover, serum BDNF levels were evaluated before and after real and sham cerebellar iTBS and the role of BDNF Val66Met polymorphism in influencing iTBS effect was explored. Present data show that one session of cerebellar iTBS was able to increase MEPs in all tested patients, suggesting an enhancement of the cerebello-thalamo-cortical pathway in SCA 38. MICARS scores were reduced after ten sessions of real cerebellar iTBS showing an improvement in clinical symptoms. Finally, although serum BDNF levels were not affected by cerebellar iTBS when considering all samples, segregating for genotype a difference was found between Val66Val and Val66Met carriers. These preliminary data suggest a potential therapeutic use of cerebellar iTBS in improving motor symptoms of SCA38.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Ataxia , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos Cross-Over , Potencial Evocado Motor/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Estimulação Magnética Transcraniana
15.
Cerebellum ; 21(3): 452-481, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34378174

RESUMO

Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.


Assuntos
Qualidade de Vida , Ataxias Espinocerebelares , Animais , Cerebelo/patologia , Consenso , Camundongos , Modelos Animais , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
16.
Stem Cell Rev Rep ; 18(2): 441-456, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34031815

RESUMO

Dominant spinocerebellar ataxias (SCAs) constitute a large group of phenotypically and genetically heterogeneous disorders that mainly present with dysfunction of the cerebellum as their main hallmark. Although animal and cell models have been highly instrumental for our current insight into the underlying disease mechanisms of these neurodegenerative disorders, they do not offer the full human genetic and physiological context. The advent of human induced pluripotent stem cells (hiPSCs) and protocols to differentiate these into essentially every cell type allows us to closely model SCAs in a human context. In this review, we systematically summarize recent findings from studies using hiPSC-based modelling of SCAs, and discuss what knowledge has been gained from these studies. We conclude that hiPSC-based models are a powerful tool for modelling SCAs as they contributed to new mechanistic insights and have the potential to serve the development of genetic therapies. However, the use of standardized methods and multiple clones of isogenic lines are essential to increase validity and reproducibility of the insights gained.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Animais , Cerebelo , Terapia Genética , Humanos , Reprodutibilidade dos Testes , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
18.
Cell Death Dis ; 12(12): 1117, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845184

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients' striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.


Assuntos
Autofagia/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Transfecção
19.
Nat Med ; 27(11): 1982-1989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663988

RESUMO

RNA interference (RNAi) for spinocerebellar ataxia type 1 can prevent and reverse behavioral deficits and neuropathological readouts in mouse models, with safety and benefit lasting over many months. The RNAi trigger, expressed from adeno-associated virus vectors (AAV.miS1), also corrected misregulated microRNAs (miRNA) such as miR150. Subsequently, we showed that the delivery method was scalable, and that AAV.miS1 was safe in short-term pilot nonhuman primate (NHP) studies. To advance the technology to patients, investigational new drug (IND)-enabling studies in NHPs were initiated. After AAV.miS1 delivery to deep cerebellar nuclei, we unexpectedly observed cerebellar toxicity. Both small-RNA-seq and studies using AAVs devoid of miRNAs showed that this was not a result of saturation of the endogenous miRNA processing machinery. RNA-seq together with sequencing of the AAV product showed that, despite limited amounts of cross-packaged material, there was substantial inverted terminal repeat (ITR) promoter activity that correlated with neuropathologies. ITR promoter activity was reduced by altering the miS1 expression context. The surprising contrast between our rodent and NHP findings highlight the need for extended safety studies in multiple species when assessing new therapeutics for human application.


Assuntos
Dependovirus/genética , Portadores de Fármacos/administração & dosagem , Terapia Genética/métodos , MicroRNAs/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Animais Geneticamente Modificados , Tronco Encefálico/patologia , Cerebelo/patologia , Feminino , Macaca mulatta , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA-Seq , Sequências Repetidas Terminais/genética
20.
Mov Disord ; 36(12): 2731-2744, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628681

RESUMO

Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxias Espinocerebelares , Animais , Terapia Genética , Peptídeos/genética , Peptídeos/uso terapêutico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA