Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125644

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.


Assuntos
Biomarcadores , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas de Neurofilamentos/metabolismo , Peptídeos/metabolismo , Progressão da Doença , Estresse Oxidativo
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125643

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD.


Assuntos
Ataxina-3 , Doença de Machado-Joseph , Repetições de Microssatélites , Diagnóstico Pré-Implantação , Expansão das Repetições de Trinucleotídeos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico , Humanos , Ataxina-3/genética , Expansão das Repetições de Trinucleotídeos/genética , Feminino , Repetições de Microssatélites/genética , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Alelos , Genótipo , Gravidez , Masculino , Proteínas Repressoras
3.
Acta Neuropathol ; 148(1): 14, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088078

RESUMO

Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.


Assuntos
Doença de Machado-Joseph , Mitofagia , Ubiquitina-Proteína Ligases , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Humanos , Ubiquitina-Proteína Ligases/genética , Mitofagia/genética , Mitofagia/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Polimorfismo de Nucleotídeo Único , Ataxina-3/genética , Idade de Início , Proteínas Repressoras
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000316

RESUMO

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Assuntos
Ataxina-3 , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Doença de Machado-Joseph , Camundongos Endogâmicos C57BL , Animais , Dependovirus/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Injeções Intravenosas , Barreira Hematoencefálica/metabolismo , Regiões Promotoras Genéticas
5.
Epigenetics ; 19(1): 2368995, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38900099

RESUMO

Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia (SCA) caused by a polyglutamine expansion in the ataxin-3 protein, which initiates a cascade of pathogenic events, including transcriptional dysregulation. Genotype-phenotype correlations in MJD are incomplete, suggesting an influence of additional factors, such as epigenetic modifications, underlying the MJD pathogenesis. DNA methylation is known to impact the pathophysiology of neurodegenerative disorders through gene expression regulation and increased methylation has been reported for other SCAs. In this work we aimed to analyse global methylation in MJD carriers. Global 5-mC levels were quantified in blood samples of 33 MJD mutation carriers (patients and preclinical subjects) and 33 healthy controls, matched by age, sex, and smoking status. For a subset of 16 MJD subjects, a pilot follow-up analysis with two time points was also conducted. No differences were found in median global 5-mC levels between MJD mutation carriers and controls and no correlations between methylation levels and clinical or genetic variables were detected. Also, no alterations in global 5-mC levels were observed over time. Our findings do not support an increase in global blood methylation levels associated with MJD.


Assuntos
Metilação de DNA , Heterozigoto , Doença de Machado-Joseph , Mutação , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Ataxina-3/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/sangue , Idoso , Epigênese Genética
6.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900277

RESUMO

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Assuntos
Autofagia , Endossomos , Peptídeos , Animais , Peptídeos/metabolismo , Endossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Enterócitos/metabolismo , Modelos Animais de Doenças , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
7.
Hum Mol Genet ; 33(16): 1406-1419, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38727562

RESUMO

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.


Assuntos
Ansiedade , Clorzoxazona , Depressão , Modelos Animais de Doenças , Ácido Fólico , Doença de Machado-Joseph , Camundongos Transgênicos , Animais , Camundongos , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/genética , Depressão/fisiopatologia , Ácido Fólico/farmacologia , Ácido Fólico/administração & dosagem , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/fisiopatologia , Doença de Machado-Joseph/patologia , Clorzoxazona/farmacologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Memória/efeitos dos fármacos , Humanos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Masculino , Ataxina-3/genética , Ataxina-3/metabolismo
8.
J Biol Chem ; 300(7): 107415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815863

RESUMO

While deubiquitinase ATXN3 has been implicated as a potential oncogene in various types of human cancers, its role in colon adenocarcinoma remains understudied. Surprisingly, our findings demonstrate that ATXN3 exerts an antitumor effect in human colon cancers through potentiating Galectin-9-induced apoptosis. CRISPR-mediated ATXN3 deletion unexpectedly intensified colon cancer growth both in vitro and in xenograft colon cancers. At the molecular level, we identified ATXN3 as a bona fide deubiquitinase specifically targeting Galectin-9, as ATXN3 interacted with and inhibited Galectin-9 ubiquitination. Consequently, targeted ATXN3 ablation resulted in reduced Galectin-9 protein expression, thereby diminishing Galectin-9-induced colon cancer apoptosis and cell growth arrest. The ectopic expression of Galectin-9 fully reversed the growth of ATXN3-null colon cancer in mice. Furthermore, immunohistochemistry staining revealed a significant reduction in both ATXN3 and Galectin-9 protein expression, along with a positive correlation between them in human colon cancer. Our study identifies the first Galectin-9-specific deubiquitinase and unveils a tumor-suppressive role of ATXN3 in human colon cancer.


Assuntos
Adenocarcinoma , Apoptose , Ataxina-3 , Neoplasias do Colo , Galectinas , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Galectinas/metabolismo , Galectinas/genética , Animais , Ataxina-3/metabolismo , Ataxina-3/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/genética , Camundongos , Linhagem Celular Tumoral , Ubiquitinação , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras
9.
Rev Neurol (Paris) ; 180(5): 378-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580500

RESUMO

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is a neurodegenerative disease caused by expanded polyglutamine repeats in exon 10 of the ataxin-3 gene, ATXN3. The accumulation of mutant ATXN3 protein leads to severe clinical manifestations and premature death. Clinically, SCA3 pathology is characterized by progressive ataxia leading to motor incoordination that may affect balance, gait and speech, and neuropathologically by a progressive degeneration of the spinal cord and cerebellum, as well as the cerebral cortex and basal ganglia. Although SCA3 is a rare disease, it is the most common autosomal dominant spinocerebellar ataxia worldwide. Its geographical distribution varies worldwide, with peak prevalence in certain regions of Brazil, Portugal and China. In 1994, the identification of the polyglutamine expansion in the ATXN3 gene made it possible not only to diagnose this pathology but also to dissect the mechanisms leading to cellular degeneration. As a monogenic disease for which only symptomatic treatment is available, the ATXN3 gene represents an attractive therapeutic target for gene editing strategies.


Assuntos
Ataxina-3 , Edição de Genes , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/genética , Ataxina-3/genética , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Proteínas Repressoras/genética
10.
EMBO Rep ; 25(6): 2786-2811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654122

RESUMO

Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.


Assuntos
Nucléolo Celular , Holografia , Humanos , Nucléolo Celular/metabolismo , Holografia/métodos , Redes Neurais de Computação , Microscopia/métodos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ataxina-3/metabolismo , Ataxina-3/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Microscopia de Contraste de Fase/métodos , Imageamento Quantitativo de Fase
11.
Biochem J ; 481(6): 461-480, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38497605

RESUMO

Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.


Assuntos
Doença de Machado-Joseph , Neoplasias , Doenças Neurodegenerativas , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Doenças Neurodegenerativas/genética
12.
Mol Ther ; 32(5): 1359-1372, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429929

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.


Assuntos
Ataxina-3 , Modelos Animais de Doenças , Doença de Machado-Joseph , Oligodendroglia , Oligonucleotídeos Antissenso , Animais , Oligodendroglia/metabolismo , Camundongos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/patologia , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Transgênicos
13.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423193

RESUMO

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Assuntos
Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cerebelo/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Sci Rep ; 14(1): 1529, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233440

RESUMO

There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).


Assuntos
Doença de Machado-Joseph , Humanos , Ataxina-3/genética , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Simulação de Acoplamento Molecular
15.
Gene ; 901: 148162, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224924

RESUMO

Circular RNAs (circRNAs) are a class of stable non-coding RNAs that have emerged as key regulators in human diseases including cancer. This study investigates the role of circRNA_0102913 (circ_0102913) in malignant behavior of colorectal cancer (CRC) cells and the underpinning mechanisms. By analyzing CRC-related GSE197991, GSE159669, and GSE223001 datasets, we obtained circ_0102913 as an aberrantly upregulated circRNA in CRC. Increased circ_0102913 expression was detected in CRC tissues and cells. By querying multiple bioinformatics systems (circBank, Circular RNA Interactome, TargetScan, miRDIP, miRwalk, and miRDB), we identified microRNA-571 (miR-571) as a target of circ_0102913 and Rac family small GTPase 2 (RAC2) mRNA as a target of miR-571. Biotinylated-RNA pull-down and/or luciferase assays showed that circ_0102913 bound to miR-571 to restore the expression of RAC2 mRNA. Circ_0102913 silencing or miR-571 overexpression repressed proliferation, migration and invasion, and in vivo tumorigenesis abilities of CRC cells. However, the malignant properties of cells were restored by RAC2 overexpression. The increased circ_0102913 expression in CRC cells was attributed to increased 5-methylcytosine (m5C) modification levels. Silencing of NOP2/Sun RNA methyltransferase 5 reduced the m5C level and therefore reduced stability and expression of circ_0102913 expression in CRC cells. In conclusion, this study demonstrates that m5C-mediated upregulation of circ_0102913 augments malignant properties of CRC cells through a miR-571/RAC2 axis.


Assuntos
Ataxina-3 , Neoplasias Colorretais , MicroRNAs , RNA Circular , Humanos , 5-Metilcitosina , Proliferação de Células , Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Circular/metabolismo , RNA Mensageiro , Regulação para Cima , Ataxina-3/genética
16.
FASEB J ; 38(2): e23429, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258931

RESUMO

Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.


Assuntos
Doença de Machado-Joseph , Neuroblastoma , Doenças Neurodegenerativas , Humanos , Animais , Ácido Butírico/farmacologia , Ataxina-3/genética , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Peixe-Zebra , Proteínas Quinases Ativadas por AMP , Agregados Proteicos , Proteômica , Autofagia , Animais Geneticamente Modificados , Proteínas Quinases Dependentes de AMP Cíclico
17.
ACS Chem Neurosci ; 15(2): 278-289, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38154144

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.


Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloide/metabolismo , Caenorhabditis elegans , Polifenóis/uso terapêutico , Extratos Vegetais/farmacologia
18.
Braz. j. med. biol. res ; 49(12): e5805, 2016. graf
Artigo em Inglês | LILACS | ID: biblio-828178

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3) protein. MJD/SCA3 is the most frequent autosomal dominant ataxia in many countries. The mechanism underlying MJD/SCA3 is thought to be mainly related to protein misfolding and aggregation leading to neuronal dysfunction followed by cell death. Currently, there are no effective treatments for patients with MJD/SCA3. Here, we report on the potential use of lithium carbonate and coenzyme Q10 to reduce cell death caused by the expanded ATX3 in cell culture. Cell viability and apoptosis were evaluated by MTT assay and by flow cytometry after staining with annexin V-FITC/propidium iodide. Treatment with lithium carbonate and coenzyme Q10 led to a significant increase in viability of cells expressing expanded ATX3 (Q84). In addition, we found that the increase in cell viability resulted from a significant reduction in the proportion of apoptotic cells. Furthermore, there was a significant change in the expanded ATX3 monomer/aggregate ratio after lithium carbonate and coenzyme Q10 treatment, with an increase in the monomer fraction and decrease in aggregates. The safety and tolerance of both drugs are well established; thus, our results indicate that lithium carbonate and coenzyme Q10 are good candidates for further in vivo therapeutic trials.


Assuntos
Humanos , Ataxina-3/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Carbonato de Lítio/farmacologia , Doença de Machado-Joseph , Proteínas Repressoras/efeitos dos fármacos , Ubiquinona/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença de Machado-Joseph/tratamento farmacológico , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA