Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.519
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732027

RESUMO

Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments.


Assuntos
Doença dos Neurônios Motores , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/terapia , Animais , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia
2.
Clin Lab ; 70(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747911

RESUMO

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Assuntos
Testes Genéticos , Atrofia Muscular Espinal , Triagem Neonatal , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Projetos Piloto , Testes Genéticos/normas , Testes Genéticos/métodos , Triagem Neonatal/normas , Triagem Neonatal/métodos , China , Teste em Amostras de Sangue Seco/normas , Teste em Amostras de Sangue Seco/métodos , Garantia da Qualidade dos Cuidados de Saúde , Laboratórios Clínicos/normas , Proteína 1 de Sobrevivência do Neurônio Motor/genética
3.
Sci Rep ; 14(1): 11838, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783003

RESUMO

5q-spinal muscular atrophy (SMA) is a neuromuscular disorder (NMD) that has become one of the first 5% treatable rare diseases. The efficacy of new SMA therapies is creating a dynamic SMA patient landscape, where disease progression and scoliosis development play a central role, however, remain difficult to anticipate. New approaches to anticipate disease progression and associated sequelae will be needed to continuously provide these patients the best standard of care. Here we developed an interpretable machine learning (ML) model that can function as an assistive tool in the anticipation of SMA-associated scoliosis based on disease progression markers. We collected longitudinal data from 86 genetically confirmed SMA patients. We selected six features routinely assessed over time to train a random forest classifier. The model achieved a mean accuracy of 0.77 (SD 0.2) and an average ROC AUC of 0.85 (SD 0.17). For class 1 'scoliosis' the average precision was 0.84 (SD 0.11), recall 0.89 (SD 0.22), F1-score of 0.85 (SD 0.17), respectively. Our trained model could predict scoliosis using selected disease progression markers and was consistent with the radiological measurements. During post validation, the model could predict scoliosis in patients who were unseen during training. We also demonstrate that rare disease data sets can be wrangled to build predictive ML models. Interpretable ML models can function as assistive tools in a changing disease landscape and have the potential to democratize expertise that is otherwise clustered at specialized centers.


Assuntos
Progressão da Doença , Aprendizado de Máquina , Atrofia Muscular Espinal , Escoliose , Humanos , Escoliose/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Masculino , Feminino , Criança , Terapia Genética/métodos , Adolescente , Pré-Escolar
4.
Nat Commun ; 15(1): 4120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750052

RESUMO

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Assuntos
Encéfalo , Células Matadoras Naturais , Neurônios Motores , Atrofia Muscular Espinal , Oligonucleotídeos , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/genética , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Análise de Célula Única , Citotoxicidade Imunológica/efeitos dos fármacos , Lactente , Pré-Escolar , Criança , Transcriptoma
5.
Nat Commun ; 15(1): 3839, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714659

RESUMO

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Assuntos
Sistemas CRISPR-Cas , Éxons , Íntrons , Splicing de RNA , RNA Guia de Sistemas CRISPR-Cas , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Splicing de RNA/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Íntrons/genética , Éxons/genética , Células HEK293 , Oligonucleotídeos Antissenso/genética , Atrofia Muscular Espinal/genética , Sequências Reguladoras de Ácido Nucleico/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
6.
Sci Rep ; 14(1): 10442, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714739

RESUMO

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Assuntos
Éxons , Atrofia Muscular Espinal , Proteoma , RNA Circular , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Transcriptoma , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Células HEK293 , Éxons/genética , Regulação da Expressão Gênica
7.
Ann Clin Transl Neurol ; 11(5): 1090-1096, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600653

RESUMO

OBJECTIVES: Mandatory newborn screening (NBS) for spinal muscular atrophy (SMA) was implemented for the first time in Italy at the end of 2021, allowing the identification and treatment of patients at an asymptomatic stage. METHODS: DNA samples extracted from dried blood spot (DBS) from newborns in Apulia region were analysed for SMA screening by using a real-time PCR-based assay. Infants harbouring homozygous deletion of SMN1 exon 7 confirmed by diagnostic molecular tests underwent clinical and neurophysiological assessment and received a timely treatment. RESULTS: Over the first 20 months since regional NBS introduction, four out of 42,492 (0.009%) screened children were found to carry a homozygous deletion in the exon 7 of SMN1 gene, with an annual incidence of 1:10,623. No false negatives were present. Median age at diagnosis was 7 days and median age at treatment was 20.5 days. Three of them had two copies of SMN2 and received gene therapy, while the one with three SMN2 copies was treated with nusinersen. All but one were asymptomatic at birth, showed no clinical signs of disease after a maximum follow-up of 16 months and reached motor milestones appropriate with their age. The minimum interval between diagnosis and the treatment initiation was 9 days. INTERPRETATION: The timely administration of disease-modifying therapies prevented presymptomatic subjects to develop disease symptoms. Mandatory NBS for SMA should be implemented on a national scale.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Proteína 1 de Sobrevivência do Neurônio Motor , Humanos , Itália , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Feminino , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacologia , Lactente
8.
Curr Opin Pediatr ; 36(3): 296-303, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38655811

RESUMO

PURPOSE OF REVIEW: Genetic therapies made a significant impact to the clinical course of patients with spinal muscular atrophy and Duchenne muscular dystrophy. Clinicians and therapists who care for these patients want to know the changes in respiratory sequelae and implications for clinical care for treated patients. RECENT FINDINGS: Different genetic therapy approaches have been developed to replace the deficient protein product in spinal muscular atrophy and Duchenne muscular dystrophy. The natural history of these conditions needed to be understood in order to design clinical trials. Respiratory parameters were not the primary outcome measures for the clinical trials. The impact of these therapies is described in subsequent clinical trial reports or real-world data. SUMMARY: Genetic therapies are able to stabilize or improve the respiratory sequelae in patients with spinal muscular atrophy and Duchenne muscular dystrophy. Standardized reporting of these outcomes is needed to help inform the future revisions of clinical standards of care and practice guidelines.


Assuntos
Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Criança , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/complicações , Resultado do Tratamento
9.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664795

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Atrofia Muscular Espinal , Transdução de Sinais , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/imunologia , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Mol Genet Genomic Med ; 12(4): e2425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562051

RESUMO

BACKGROUND: To explore the clinical application value of pre-conception expanded carrier screening (PECS) in the Chinese Han ethnicity population of childbearing age. METHODS: The results of genetic testing of infertile parents who underwent PECS in the Reproductive Medicine Center of the Second Affiliated Hospital of Zhengzhou University, China, from September 2019 to December 2021, were retrospectively analyzed. The carrier rate of single gene disease, the detection rate of high-risk parents, and the clinical outcome of high-risk parents were statistically analyzed. RESULTS: A total of 1372 Chinese Han ethnicity patients underwent PECS, among which 458 patients underwent the extended 108-gene test, their overall carrier rate was 31.7%, and the detection rate of high-risk parents was 0.3%. The highest carrier rates were SLC22A (2.4%), ATP7B (2.4%), MMACHC (2.2%), PAH (1.8%), GALC (1.8%), MLC1 (1.3%), UNC13D (1.1%), CAPN3 (1.1%), and PKHD1 (1.1%). There were 488 women with fragile X syndrome-FMR1 gene detection, and 6 patients (1.2%) had FMR1 gene mutation. A total of 426 patients were screened for spinal muscular atrophy-SMN1, and the carrier rate was 3.5%, and the detection rate of parents' co-carrier was 0.5%. CONCLUSION: Monogenic recessive hereditary diseases had a high carrier rate in the population. Pre-pregnancy screening could provide good prenatal and postnatal care guidance for patients and preimplantation genetic testing for monogenic/single gene disorders (PGT-M) and prenatal diagnosis could provide more precise reproductive choices for high-risk parents.


Assuntos
Testes Genéticos , Atrofia Muscular Espinal , Gravidez , Humanos , Feminino , Estudos Retrospectivos , Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Mutação , Atrofia Muscular Espinal/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Oxirredutases/genética , Proteínas de Membrana/genética
11.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561840

RESUMO

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Assuntos
Vesículas Extracelulares , Atrofia Muscular Espinal , Humanos , Criança , Camundongos , Animais , Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Neurônios Motores , Células-Tronco/metabolismo , Vesículas Extracelulares/metabolismo
12.
Acta Myol ; 43(1): 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586164

RESUMO

Hereditary proximal 5q Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder with onset mainly in infancy or childhood. The underlying pathogenic mechanism is the loss of alpha motor neurons in the anterior horns of spine, due to deficiency of the survival motor neuron (SMN) protein as a consequence of the deletion of the SMN1 gene. Clinically, SMA is characterized by progressive loss of muscle strength and motor function ranging from the extremely severe, the neonatal onset type 1, to the mild type 4 arising in the adult life. All the clinical variants share the same molecular defect, the difference being driven mainly by the copy number of SMN2 gene, a centromeric gene nearly identical to SMN1 with a unique C to T transition in Exon 7 that results in exclusion of Exon 7 during post-transcriptional processing. In all the types of SMA the clinical picture is characterized by hypotonia, weakness and areflexia. Clinical severity can vary a lot between the four main recognized types of SMA. As for the most of patients affected by different neuromuscular disorders, also in SMA fatigability is a major complaint as it is frequently reported in common daily activities and negatively impacts on the overall quality of life. The increasing awareness of fatigability as an important dimension of impairment in Neuromuscular Disorders and particularly in SMA, is making it both a relevant subject of study and identifies it as a fundamental therapeutic target. In this review, we aimed to overview the current literature articles concerning this problem, in order to highlight what is known and what deserves further research.


Assuntos
Atrofia Muscular Espinal , Doenças Neuromusculares , Adulto , Criança , Humanos , Recém-Nascido , Éxons , Fadiga , Atrofia Muscular Espinal/genética , Doenças Neuromusculares/genética , Qualidade de Vida , Fatores de Transcrição/genética
13.
Med ; 5(5): 469-478.e3, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531362

RESUMO

BACKGROUND: Spinal muscular atrophy is a progressive neuromuscular disorder and among the most frequent genetic causes of infant mortality. While recent advancements in gene therapy provide the potential to ameliorate the disease severity, there is currently no modality in clinical use to visualize dynamic pathophysiological changes in disease progression and regression after therapy. METHODS: In this prospective diagnostic clinical study, ten pediatric patients with spinal muscular atrophy and ten age- and sex-matched controls have been examined with three-dimensional optoacoustic imaging and clinical standard examinations to compare the spectral profile of muscle tissue and correlate it with motor function (ClinicalTrials.gov: NCT04115475). FINDINGS: We observed a reduced optoacoustic signal in muscle tissue of pediatric patients with spinal muscular atrophy. The reduction in signal intensity correlated with disease severity as assessed by grayscale ultrasound and standard motor function tests. In a cohort of patients who received disease-modifying therapy prior to the study, the optoacoustic signal intensity was similar to healthy controls. CONCLUSIONS: This translational study provides early evidence that three-dimensional optoacoustic imaging could have clinical implications in monitoring disease activity in spinal muscular atrophy. By visualizing and quantifying molecular changes in muscle tissue, disease progression and effects of gene therapy can be assessed in real time. FUNDING: The project was funded by ELAN Fonds (P055) at the University Hospital of the Friedrich-Alexander-Universität (FAU) Erlangen-Nurnberg to A.P.R.


Assuntos
Imageamento Tridimensional , Atrofia Muscular Espinal , Técnicas Fotoacústicas , Humanos , Feminino , Masculino , Estudos Prospectivos , Pré-Escolar , Imageamento Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Criança , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/terapia , Lactente , Progressão da Doença , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Adolescente , Atrofias Musculares Espinais da Infância/diagnóstico por imagem , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/terapia , Atrofias Musculares Espinais da Infância/fisiopatologia , Atrofias Musculares Espinais da Infância/diagnóstico
14.
Neuromuscul Disord ; 37: 13-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493520

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.


Assuntos
Atrofia Muscular Espinal , Caracteres Sexuais , Camundongos , Humanos , Animais , Feminino , Masculino , Incidência , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Fenótipo , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética
15.
Genes (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540372

RESUMO

In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Homozigoto , Japão , Deleção de Sequência , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética
16.
BMC Neurol ; 24(1): 93, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468256

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a rare autosomal recessive hereditary neuromuscular disease caused by survival motor neuron 1 (SMN1) gene deletion or mutation. Homozygous deletions of exon 7 in SMN1 result in 95% of SMA cases, while the remaining 5% are caused by other pathogenic variants of SMN1. METHODS: We analyzed two SMA-suspected cases that were collected, with no SMN1 gene deletion and point mutation in whole-exome sequencing. Exon 1 deletion of the SMN gene was detected using Multiplex ligation-dependent probe amplification (MLPA) P021. We used long-range polymerase chain reaction (PCR) to isolate the SMN1 template, optimized-MLPA P021 for copy number variation (CNV) analysis within SMN1 only, and validated the findings via third-generation sequencing. RESULTS: Two unrelated families shared a genotype with one copy of exon 7 and a novel variant, g.70919941_70927324del, in isolated exon 1 of the SMN1 gene. Case F1-II.1 demonstrated no exon 1 but retained other exons, whereas F2-II.1 had an exon 1 deletion in a single SMN1 gene. The read coverage in the third-generation sequencing results of both F1-II.1 and F2-II.1 revealed a deletion of approximately 7.3 kb in the 5' region of SMN1. The first nucleotide in the sequence data aligned to the 7385 bp of NG_008691.1. CONCLUSION: Remarkably, two proband families demonstrated identical SMN1 exon 1 breakpoint sites, hinting at a potential novel mutation hotspot in Chinese SMA, expanding the variation spectrum of the SMN1 gene and corroborating the specificity of isolated exon 1 deletion in SMA pathogenesis. The optimized-MLPA P021 determined a novel variant (g.70919941_70927324del) in isolated exon 1 of the SMN1 gene based on long-range PCR, enabling efficient and affordable detection of SMN gene variations in patients with SMA, providing new insight into SMA diagnosis to SMN1 deficiency and an optimized workflow for single exon CNV testing of the SMN gene.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Atrofia Muscular Espinal , Humanos , Variações do Número de Cópias de DNA/genética , Fluxo de Trabalho , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Neurônios Motores , Éxons/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
17.
Acta Neuropathol ; 147(1): 53, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470509

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by recessive pathogenic variants affecting the survival of motor neuron (SMN1) gene (localized on 5q). In consequence, cells lack expression of the corresponding protein. This pathophysiological condition is clinically associated with motor neuron (MN) degeneration leading to severe muscular atrophy. Additionally, vulnerability of other cellular populations and tissues including skeletal muscle has been demonstrated. Although the therapeutic options for SMA have considerably changed, treatment responses may differ thus underlining the persistent need for validated biomarkers. To address this need and to identify novel marker proteins for SMA, we performed unbiased proteomic profiling on cerebrospinal fluid derived (CSF) from genetically proven SMA type 1-3 cases and afterwards performed ELISA studies on CSF and serum samples to validate the potential of a novel biomarker candidates in both body fluids. To further decipher the pathophysiological impact of this biomarker, immunofluorescence studies were carried out on spinal cord and skeletal muscle derived from a 5q-SMA mouse model. Proteomics revealed increase of LARGE1 in CSF derived from adult patients showing a clinical response upon treatment with nusinersen. Moreover, LARGE1 levels were validated in CSF samples of further SMA patients (type 1-3) by ELISA. These studies also unveiled a distinguishment between groups in improvement of motor skills: adult patients do present with lowered level per se at baseline visit while no elevation upon treatment in the pediatric cohort can be observed. ELISA-based studies of serum samples showed no changes in the pediatric cohort but unraveled elevated level in adult patients responding to future intervention with nusinersen, while non-responders did not show a significant increase. Additional immunofluorescence studies of LARGE1 in MN and skeletal muscle of a SMA type 3 mouse model revealed an increase of LARGE1 during disease progression. Our combined data unraveled LARGE1 as a protein dysregulated in serum and CSF of SMA-patients (and in MN and skeletal muscle of SMA mice) holding the potential to serve as a disease marker for SMA and enabling to differentiate between patients responding and non-responding to therapy with nusinersen.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Adulto , Humanos , Criança , Camundongos , Animais , Proteômica , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofias Musculares Espinais da Infância/patologia , Neurônios Motores/patologia , Biomarcadores/líquido cefalorraquidiano , Modelos Animais de Doenças
18.
J Mol Diagn ; 26(5): 364-373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490302

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.


Assuntos
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutação , Neurônios Motores , Éxons/genética , Heterozigoto , Proteína 1 de Sobrevivência do Neurônio Motor/genética
19.
Neuromuscul Disord ; 37: 29-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520993

RESUMO

5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.


Assuntos
Atrofia Muscular Espinal , Criança , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Neurônios Motores , Éxons , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
20.
Genet Test Mol Biomarkers ; 28(5): 207-212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533877

RESUMO

Background: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular life-threatening disorder. Owing to high carrier frequency, population-wide SMA screening to quantify the copy number of SMN gene is recommended by American College of Medical Genetics and Genomics. An accurate, reliable, short runaround time and cost-effective method may be helpful in mass population screening for SMA. Methods: Multiplex ligation-dependent probe amplification (MLPA) is a gold standard to estimate the copy number variation (CNV) for SMN1 and SMN2 genes. In this study, we validated droplet digital polymerase chain reaction (ddPCR) for the determination of CNV for both SMN1 and SMN2 exon 7 for a diagnostic purpose. In total, 66 clinical samples were tested using ddPCR, and results were compared with the MLPA as a reference test. Results: For all samples, CNV for SMN1 and SMN2 exon 7 was consentaneous between ddPCR and MLPA test results (κ = 1.000, p < 0.0001). In addition, ddPCR also showed a significant acceptable degree of test repeatability, coefficient of variation < 4%. Conclusion: ddPCR is expected to be utilitarian for CNV detection for carrier screening and diagnosis of SMA. ddPCR test results for CNV detection for SMN1/SMN2 exon 7 are concordant with the gold standard. ddPCR is a more cost-effective and time-saving diagnostic test for SMA than MLPA. Furthermore, it can be used for population-wide carrier screening for SMA.


Assuntos
Variações do Número de Cópias de DNA , Éxons , Triagem de Portadores Genéticos , Reação em Cadeia da Polimerase Multiplex , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Variações do Número de Cópias de DNA/genética , Triagem de Portadores Genéticos/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Éxons/genética , Feminino , Masculino , Testes Genéticos/métodos , Heterozigoto , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA