Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.555
Filtrar
1.
Biomol NMR Assign ; 18(1): 111-118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691336

RESUMO

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5' terminal oligopyrimidine (5'TOP) mRNAs as well as other mRNAs and binds to both the 5'TOP motif and the 3'-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.


Assuntos
Motivos de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Humanos , Isótopos de Nitrogênio , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a RNA
2.
Sci Rep ; 14(1): 9571, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671086

RESUMO

Primary vitreoretinal lymphoma (PVRL) is a rare subtype of DLBCL and can progress into primary central nervous system lymphoma (PCNSL). To investigate the role of chronic antigenic stimulation in PVRL, we cloned and expressed B-cell receptors (BCR) from PVRL patients and tested for binding against human auto-antigens. SEL1L3, a protein with multiple glycosylation sites, was identified as the BCR target in 3/20 PVRL cases. SEL1L3 induces proliferation and BCR pathway activation in aggressive lymphoma cell lines. Moreover, SEL1L3 conjugated to a toxin killed exclusively lymphoma cells with respective BCR-reactivity. Western Blot analysis indicates the occurrence of hyper-N-glycosylation of SEL1L3 at aa 527 in PVRL patients with SEL1L3-reactive BCRs. The BCR of a PVRL patient with serum antibodies against SEL1L3 was cloned from a vitreous body biopsy at diagnosis and of a systemic manifestation at relapse. VH4-04*07 was used in both lymphoma manifestations with highly conserved CDR3 regions. Both BCRs showed binding to SEL1L3, suggesting continued dependence of lymphoma cells on antigen stimulation. These results indicate an important role of antigenic stimulation by post-translationally modified auto-antigens in the genesis of PVRL. They also provide the basis for a new treatment approach targeting unique lymphoma BCRs with ultimate specificity.


Assuntos
Receptores de Antígenos de Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Glicosilação , Linhagem Celular Tumoral , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Neoplasias da Retina/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Feminino , Masculino , Corpo Vítreo/metabolismo , Corpo Vítreo/patologia , Pessoa de Meia-Idade , Idoso
3.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 176-180, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678610

RESUMO

Recently, the progression of gastric cancer (GC), as one of the most ordinary malignant tumors, has been reported to be associated with circular RNAs. This study aimed to identify the role of circular RNA_LARP4 in GC. We performed real-time quantitative polymerase chain reaction (RT-qPCR) in 46 paired GC patients and GC cell lines to detect the expression of circular RNA_LARP4. Moreover, the role of circular RNA_LARP4 in GC proliferation was identified through proliferation assay and colony formation assay, while the role of circular RNA_LARP4 in GC metastasis was measured through scratch wound assay and transwell assay. Furthermore, the potential targets of circular RNA_LARP4 were predicted through bioinformatics methods and further identified by western blot assay and RT-qPCR. Circular RNA_LARP4 expression was remarkably lower in GC tissues compared with that in adjacent samples. Besides, cell proliferation of GC was inhibited after overexpression of circular RNA_LARP4, while cell migration and invasion of GC was inhibited after overexpression of circular RNA_LARP4. Furthermore, Upstream frameshift 1 (UPF1) was predicted as the potential target of circular RNA_LARP4 and was upregulated via overexpression of circular RNA_LARP4 in GC. Circular RNA_LARP4 inhibits GC cell proliferation and metastasis via targeting UPF1 in vitro, which might provide a new tumor suppressor in GC development.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Antígeno SS-B , Transativadores/genética , Transativadores/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Feminino , Masculino , RNA/genética , RNA/metabolismo , Invasividade Neoplásica/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Regulação para Cima/genética
4.
Nat Commun ; 15(1): 899, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321013

RESUMO

Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Camundongos , Animais , Humanos , Linfócitos T Reguladores , Autoantígenos/metabolismo
5.
Cell Res ; 34(4): 295-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326478

RESUMO

Autoreactive B cells are silenced through receptor editing, clonal deletion and anergy induction. Additional autoreactive B cells are ignorant because of physical segregation from their cognate autoantigen. Unexpectedly, we find that follicular B cell-derived autoantigen, including cell surface molecules such as FcγRIIB, is a class of homeostatic autoantigen that can induce spontaneous germinal centers (GCs) and B cell-reactive autoantibodies in non-autoimmune animals with intact T and B cell repertoires. These B cell-reactive B cells form GCs in a manner dependent on spontaneous follicular helper T (TFH) cells, which preferentially recognize B cell-derived autoantigen, and in a manner constrained by spontaneous follicular regulatory T (TFR) cells, which also carry specificities for B cell-derived autoantigen. B cell-reactive GC cells are continuously generated and, following immunization or infection, become intermixed with foreign antigen-induced GCs. Production of plasma cells and antibodies derived from B cell-reactive GC cells are markedly enhanced by viral infection, potentially increasing the chance for autoimmunity. Consequently, immune homeostasis in healthy animals not only involves classical tolerance of silencing and ignoring autoreactive B cells but also entails a reactive equilibrium attained by a spontaneous B cell-reactive triad of B cells, TFH cells and TFR cells.


Assuntos
Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Animais , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos B , Centro Germinativo/metabolismo , Autoantígenos/metabolismo
6.
J Transl Med ; 22(1): 183, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378668

RESUMO

BACKGROUND: Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY: Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS: Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vß gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.


Assuntos
Linfócitos T CD8-Positivos , Miastenia Gravis Autoimune Experimental , Animais , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Linfócitos T Reguladores , Autoantígenos/metabolismo
7.
J Autoimmun ; 144: 103174, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377868

RESUMO

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Camundongos , Animais , Lipossomos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Autoantígenos/metabolismo , Adjuvantes Imunológicos , Imunização , Vacinação , Fenótipo , Camundongos Endogâmicos C57BL , Células Th1
8.
Arthritis Rheumatol ; 76(1): 92-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37530745

RESUMO

OBJECTIVE: Autoantibodies are clinically useful in phenotyping patients with systemic sclerosis (SSc). Gastrointestinal (GI) function is regulated by the enteric nervous system (ENS) and commonly impaired in SSc, suggesting that the SSc autoimmune response may target ENS antigens. We sought to identify novel anti-ENS autoantibodies with an aim to clinically phenotype SSc GI dysfunction. METHODS: Serum from a patient with SSc with GI dysfunction but without defined SSc-associated autoantibodies was used for autoantibody discovery. Immunoprecipitations performed with murine myenteric plexus lysates were on-bead digested, and autoantigens were identified by mass spectrometry. Prevalence was determined, and clinical features associated with novel autoantibodies were evaluated in a SSc cohort using regression analyses. The expression of gephyrin in human GI tract tissue was examined by immunohistochemistry. RESULTS: We identified gephyrin as a novel SSc autoantigen. Anti-gephyrin antibodies were present in 9% of patients with SSc (16/188) and absent in healthy controls (0/46). Anti-gephyrin antibody-positive patients had higher constipation scores (1.00 vs 0.50, P = 0.02) and were more likely to have severe constipation and severe distention/bloating (46% vs 15%, P = 0.005; 54% vs 25%, P = 0.023, respectively). Anti-gephyrin antibody levels were significantly higher among patients with severe constipation (0.04 vs 0.00; P = 0.001) and severe distention and bloating (0.03 vs 0.004; P = 0.010). Severe constipation was associated with anti-gephyrin antibodies even in the adjusted model. Importantly, gephyrin was expressed in the ENS, which regulates gut motility. CONCLUSION: Gephyrin is a novel ENS autoantigen that is expressed in human myenteric ganglia. Anti-gephyrin autoantibodies are associated with the presence and severity of constipation in patients with SSc.


Assuntos
Autoanticorpos , Proteínas de Membrana , Escleroderma Sistêmico , Proteínas de Membrana/metabolismo , Autoantígenos/metabolismo , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia , Autoanticorpos/análise , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiopatologia , Humanos , Animais , Camundongos , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/fisiopatologia
9.
Semin Arthritis Rheum ; 64S: 152315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008707

RESUMO

BACKGROUND: The generation and persistence of autoreactive B and plasma cells is crucial to the pathogenesis of many human autoimmune diseases. Secreted autoantibodies frequently serve as biomarkers in clinical practice and, in some cases, function as pathogenic effector molecules. Nonetheless, the primary break of B cell tolerance against autoantigens, the triggers that maintain autoreactive B cell memory, and the phenotype that autoreactive B cells adopt during the disease course are poorly understood. OBJECTIVES: To study phenotype and functional characteristics of human autoreactive B cells in the course of human disease using rheumatoid arthritis and the B cell response against posttranslationally modified antigens as prototype. METHODS: Combinatorial, antigen-specific identification and multiparameter phenotyping of autoreactive B cells by conventional and spectral flow cytometry in cohorts with well-defined clinical phenotypes, including patients in the phase preceding disease and in those reaching long-term, drugfree remission. RESULTS: Autoreactive B cells against post-translationally modified proteins operate as remarkably activated effector memory cells in patients with established disease and maintain this state throughout the disease course. The activation generates cytokine-secreting germinal center emigrants that resist conventional therapy, and migratory plasmablasts expressing homing markers that can direct the cells to sites of inflammation. In the pre-clinical at-risk phase, the degree of activation is lower, and migratory plasmablasts are less frequent. The cells are cross-reactive to different posttranslational modifications and express B cell receptors that are extensively glycosylated in the variable domain. CONCLUSIONS: Immune phenotyping of disease-specific, autoreactive B cells reveals heterogeneous features of human autoimmunity that reflect disease stage and course and that are only revealed upon antigen-specific cellular analysis. In rheumatoid arthritis, the picture of germinal center-derived B cell autoreactivity against post-translationally modified antigens emerges that displays extensive cross-reactivity and a likely dependence on T cell help. Such features may be different for other human autoimmune diseases with different disease kinetics, which each may require different strategies for (autoreactive) B cell targeting.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Autoimunidade , Autoanticorpos , Autoantígenos/metabolismo , Progressão da Doença
10.
Nucleic Acids Res ; 52(5): 2273-2289, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118002

RESUMO

Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Antígenos Nucleares , Autoantígenos , Neoplasias Oculares , Histonas , Melanoma , Humanos , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Desmetilação , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Neoplasias Oculares/metabolismo
11.
Curr Opin Biotechnol ; 85: 103056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141322

RESUMO

Autoantibodies (AAb) are an immunological resource ripe for exploitation in cancer detection and treatment. Key to this translation is a better understanding of the self-epitope that AAb target in tumor tissue, but do not bind to in normal tissue. Posttranslational modifications (PTMs) on self-proteins are known to break tolerance in many autoimmune diseases and have also recently been described in cancer. This scope of possible autoantigens is quite broad and new high-dimensional and -throughput technologies to probe this repertoire will be necessary to fully exploit their potential. Here, we discuss the strengths and weaknesses of existing high-throughput platforms to detect AAb, review the current methods for characterizing immunogenic PTMs, describe the main challenges to identifying disease-relevant antigens and suggest the properties of future technologies that may be able to address these challenges. We conclude that exploiting the evolutionary power of the immune system to distinguish between self and nonself has great potential to be translated into antibody-based clinical applications.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
12.
Nat Commun ; 14(1): 8227, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086807

RESUMO

Centromeres are epigenetically defined via the presence of the histone H3 variant CENP-A. Contacting CENP-A nucleosomes, the constitutive centromere associated network (CCAN) and the kinetochore assemble, connecting the centromere to spindle microtubules during cell division. The DNA-binding centromeric protein CENP-B is involved in maintaining centromere stability and, together with CENP-A, shapes the centromeric chromatin state. The nanoscale organization of centromeric chromatin is not well understood. Here, we use single-molecule fluorescence and cryoelectron microscopy (cryoEM) to show that CENP-A incorporation establishes a dynamic and open chromatin state. The increased dynamics of CENP-A chromatin create an opening for CENP-B DNA access. In turn, bound CENP-B further opens the chromatin fiber structure and induces nucleosomal DNA unwrapping. Finally, removal of CENP-A increases CENP-B mobility in cells. Together, our studies show that the two centromere-specific proteins collaborate to reshape chromatin structure, enabling the binding of centromeric factors and establishing a centromeric chromatin state.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Proteína Centromérica A/metabolismo , Microscopia Crioeletrônica , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/metabolismo , Nucleossomos , DNA/metabolismo , Autoantígenos/metabolismo
13.
Front Immunol ; 14: 1242860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094290

RESUMO

The regulatory T (Treg) cells constitute a functionally defined subpopulation of T cells that modulate the immune system and maintain immune tolerance through suppression of the development of autoimmune responses to self-antigens and allergic reactions to external antigens. Reduction in the number or function of Treg cells has been suggested as a key immune abnormality underlying the development of autoimmune and allergic diseases. In vitro studies have demonstrated that purified polyvalent immunoglobulin G (IgG) from multiple healthy blood donors can exert immunomodulatory effects on Treg cells. Incubation of polyvalent human IgG with purified CD4+CD25high T cells increased the intracellular expression of interleukin (IL)-10. Intravenous administration of polyvalent human IgG induced significant expansions of CD4+ Foxp3+ Treg cells and clinical improvements in patients with autoimmune diseases. In human clinical trials, intramuscular administration of autologous total IgG significantly increased the percentage of IL-10-producing CD4+ Treg cells in the peripheral blood of healthy subjects and provided significant clinical improvements in patients with atopic dermatitis. These results suggest a clinical usefulness of polyvalent IgG-induced activation of Treg cells in human subjects. This review proposes a new hypothesis for immune tolerance mechanism by integrating the pre-existing "idiotypic network theory" and "Treg cell theory" into an "anti-idiotypic Treg cell theory." Based on this hypothesis, an "active anti-idiotypic therapy" for allergic and autoimmune diseases using autologous polyvalent IgG (as immunizing antigens) is suggested as follows: (1) Intramuscular or subcutaneous administration of autologous polyvalent IgG produces numerous immunogenic peptides derived from idiotypes of autologous IgG through processing of dendritic cells, and these peptides activate anti-idiotypic Treg cells in the same subject. (2) Activated anti-idiotypic Treg cells secrete IL-10 and suppress Th2 cell response to allergens and autoimmune T cell response to self-antigens. (3) These events can induce a long-term clinical improvements in patients with allergic and autoimmune diseases. Further studies are needed to evaluate the detailed molecular mechanism underlying polyvalent IgG-induced Treg cell activation and the clinical usefulness of this immunomodulatory therapy for autoimmune and allergic diseases.


Assuntos
Doenças Autoimunes , Hipersensibilidade , Humanos , Linfócitos T Reguladores , Interleucina-10/metabolismo , Imunoglobulina G/metabolismo , Tolerância Imunológica , Alérgenos , Hipersensibilidade/metabolismo , Doenças Autoimunes/terapia , Doenças Autoimunes/metabolismo , Autoantígenos/metabolismo
14.
Aging (Albany NY) ; 15(21): 12570-12587, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37950733

RESUMO

BACKGROUND: Mycobacterium tuberculosis (Mtb) is the bacterial pathogen responsible for causing tuberculosis (TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB. METHODS: Our research entailed utilizing single sample gene set enrichment analysis (ssGSEA) in combination with several machine learning techniques to discern the Ub-related signature of TB and identify potential diagnostic markers that distinguish TB from healthy controls (HC). RESULTS: In summary, we used the ssGSEA algorithm to determine the score of Ub families (E1, E2, E3, DUB, UBD, and ULD). Notably, the score of E1, E3, and UBD were lower in TB patients than in HC individuals, and we identified 96 Ub-related differentially expressed genes (UbDEGs). Employing machine learning algorithms, we identified 11 Ub-related hub genes and defined two distinct Ub-related subclusters. Notably, through GSVA and functional analysis, it was determined that these subclusters were implicated in numerous immune-related processes. We further investigated these Ub-related hub genes in four TB-related diseases and found that TRIM68 exhibited higher correlations with various immune cells in different conditions, indicating that it may play a crucial role in the immune process of these diseases. CONCLUSION: The observed enrichment of Ub-related gene expression in TB patients emphasizes the potential involvement of ubiquitination in the progression of TB. These significant findings establish a basis for future investigations to elucidate the molecular mechanisms associated with TB, select suitable diagnostic biomarkers, and design innovative therapeutic interventions for combating this fatal infectious disease.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/genética , Tuberculose/microbiologia , Ubiquitinação , Algoritmos , Proteínas com Motivo Tripartido/genética , Autoantígenos/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Cell Mol Immunol ; 20(12): 1472-1486, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37990032

RESUMO

The expression of self-antigens in medullary thymic epithelial cells (mTECs) is essential for the establishment of immune tolerance, but the regulatory network that controls the generation and maintenance of the multitude of cell populations expressing self-antigens is poorly understood. Here, we show that Insm1, a zinc finger protein with known functions in neuroendocrine and neuronal cells, is broadly coexpressed with an autoimmune regulator (Aire) in mTECs. Insm1 expression is undetectable in most mimetic cell populations derived from mTECs but persists in neuroendocrine mimetic cells. Mutation of Insm1 in mice downregulated Aire expression, dysregulated the gene expression program of mTECs, and altered mTEC subpopulations and the expression of tissue-restricted antigens. Consistent with these findings, loss of Insm1 resulted in autoimmune responses in multiple peripheral tissues. We found that Insm1 regulates gene expression in mTECs by binding to chromatin. Interestingly, the majority of the Insm1 binding sites are co-occupied by Aire and enriched in superenhancer regions. Together, our data demonstrate the important role of Insm1 in the regulation of the repertoire of self-antigens needed to establish immune tolerance.


Assuntos
Tolerância Imunológica , Timo , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Autoantígenos/metabolismo , Diferenciação Celular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
16.
BMC Cancer ; 23(1): 949, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803411

RESUMO

BACKGROUND: Collagens are the major components of the extracellular matrix (ECM) and are known to contribute to tumor progression and metastasis. There are 28 different types of collagens each with unique functions in maintaining tissue structure and function. Type XVII collagen (BP180) is a type II transmembrane protein that provides stable adhesion between epithelial cells and the underlying basement membrane. Aberrant expression and ectodomain shedding of type XVII collagen have been associated with epithelial damage, tumor invasiveness, and metastasis in multiple tumor types and may consequently be used as a potential (non-invasive) biomarker in cancer and treatment target. METHOD: An ELISA targeting the type XVII collagen ectodomain (PRO-C17) was developed for use in serum. PRO-C17 was measured in a cohort of patients with 11 different cancer types (n = 214) and compared to healthy controls (n = 23) (cohort 1). Based on the findings from cohort 1, PRO-C17 and its association with survival was explored in patients with metastatic colorectal cancer (mCRC) treated with bevacizumab in combination with chemotherapy (n = 212) (cohort 2). RESULTS: PRO-C17 was robust and specific towards the ectodomain of type XVII collagen. In cohort 1, PRO-C17 levels were elevated (p < 0.05) in serum from patients with CRC, kidney, ovarian, bladder, breast, and head and neck cancer compared to healthy controls. PRO-C17 was especially good at discriminating between CRC patients and healthy controls with an AUROC of 0.904. In cohort 2, patients with mCRC and high levels (tertile 3) of PRO-C17 had shorter overall survival (OS) with a median OS of 390 days compared to 539 days for patients with low levels of PRO-C17. When evaluated by multivariate Cox regression analysis, high PRO-C17 was predictive for poor OS independent of risk factors and the tumor fibrosis biomarker PRO-C3. CONCLUSION: PRO-C17 measures the ectodomain of type XVII collagen in serum and is a promising non-invasive biomarker that can aid in understanding tumor heterogeneity as well as elaborate on the role of collagen XVII in tumor progression. Moreover, the findings in the study proposes PRO-C17 as novel biomarker of epithelial damage in specific cancer types including CRC.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Humanos , Prognóstico , Colágenos não Fibrilares/metabolismo , Colágeno/química , Autoantígenos/metabolismo , Biomarcadores , Colágeno Tipo XVII
17.
Front Immunol ; 14: 1267697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818381

RESUMO

T Regulatory type-1 (TR1) cells represent an immunosuppressive T cell subset, discovered over 25 years ago, that produces high levels of interleukin-10 (IL-10) but, unlike its FoxP3+ T regulatory (Treg) cell counterpart, does not express FoxP3 or CD25. Experimental evidence generated over the last few years has exposed a promising role for TR1 cells as targets of therapeutic intervention in immune-mediated diseases. The discovery of cell surface markers capable of distinguishing these cells from related T cell types and the application of next generation sequencing techniques to defining their transcriptional make-up have enabled a more accurate description of this T cell population. However, the developmental biology of TR1 cells has long remained elusive, in particular the identity of the cell type(s) giving rise to bona fide TR1 cells in vivo. Here, we review the fundamental phenotypic, transcriptional and functional properties of this T cell subset, and summarize recent lines of evidence shedding light into its ontogeny.


Assuntos
Autoantígenos , Subpopulações de Linfócitos T , Autoantígenos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Forkhead/metabolismo
18.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761976

RESUMO

The interaction between regulatory T (Treg) cells and self-reactive T cells is a crucial mechanism for maintaining immune tolerance. In this study, we investigated the cross-activation of Treg cells by self-antigens and its impact on self-reactive CD8+ T cell responses, with a focus on the P53 signaling pathway. We discovered that major histocompatibility complex (MHC) I-restricted self-peptides not only activated CD8+ T cells but also induced the delayed proliferation of Treg cells. Following HLA-A*0201-restricted Melan-A-specific (pMelan) CD8+ T cells, we observed the direct expansion of Treg cells and concurrent suppression of pMelan+CD8+ T cell proliferation upon stimulation with Melan-A peptide. Transcriptome analysis revealed no significant alterations in specific signaling pathways in pMelan+CD8+ T cells that were co-cultured with activated Treg cells. However, there was a noticeable upregulation of genes involved in P53 accumulation, a critical regulator of cell survival and apoptosis. Consistent with such observation, the blockade of P53 induced a continuous proliferation of pMelan+CD8+ T cells. The concurrent stimulation of Treg cells through self-reactive TCRs by self-antigens provides insights into the immune system's ability to control activated self-reactive CD8+ T cells as part of peripheral tolerance, highlighting the intricate interplay between Treg cells and CD8+ T cells and implicating therapeutic interventions in autoimmune diseases and cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos T Reguladores , Antígeno MART-1/metabolismo , Autoantígenos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Antígenos CD8/metabolismo
19.
Cell Rep ; 42(10): 113178, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742188

RESUMO

Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.


Assuntos
Autoantígenos , Proteínas Cromossômicas não Histona , Animais , Camundongos , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Camundongos Endogâmicos
20.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511433

RESUMO

N-acetylglucosamine kinase (NAGK) has been identified as an anchor protein that facilitates neurodevelopment with its non-canonical structural role. Similarly, small nuclear ribonucleoprotein polypeptide N (SNRPN) regulates neurodevelopment and cognitive ability. In our previous study, we revealed the interaction between NAGK and SNRPN in the neuron. However, the precise role in neurodevelopment is elusive. In this study, we investigate the role of NAGK and SNRPN in the axodendritic development of neurons. NAGK and SNRPN interaction is significantly increased in neurons at the crucial stages of neurodevelopment. Furthermore, overexpression of the NAGK and SNRPN proteins increases axodendritic branching and neuronal complexity, whereas the knockdown inhibits neurodevelopment. We also observe the interaction of NAGK and SNRPN with the dynein light-chain roadblock type 1 (DYNLRB1) protein variably during neurodevelopment, revealing the microtubule-associated delivery of the complex. Interestingly, NAGK and SNRPN proteins rescued impaired axodendritic development in an SNRPN depletion model of Prader-Willi syndrome (PWS) patient-derived induced pluripotent stem cell neurons. Taken together, these findings are crucial in developing therapeutic approaches for neurodegenerative diseases.


Assuntos
Síndrome de Prader-Willi , Ribonucleoproteínas Nucleares Pequenas , Humanos , Autoantígenos/metabolismo , Cromossomos Humanos Par 15/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Centrais de snRNP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA