Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.288
Filtrar
1.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759629

RESUMO

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Assuntos
Amiloide , Autofagossomos , Autofagia , Proteína Huntingtina , Doença de Huntington , Peptídeos , Agregados Proteicos , Proteína Sequestossoma-1 , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Microscopia Crioeletrônica , Animais , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética
2.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773797

RESUMO

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Assuntos
Autofagia , Medicamentos de Ervas Chinesas , Osteoporose , Estresse Oxidativo , Animais , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Ratos Sprague-Dawley , Estreptozocina , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Densidade Óssea/efeitos dos fármacos
3.
Int J Med Sci ; 21(6): 1165-1175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774756

RESUMO

Oral cancer is the most heterogeneous cancer at clinical and histological levels. PI3K/AKT/mTOR pathway was identified as one of the most commonly modulated signals in oral cancer, which regulates major cellular and metabolic activity of the cell. Thus, various proteins of PI3K/AKT/mTOR pathway were used as therapeutic targets for oral cancer, to design more specific drugs with less off-target toxicity. This review sheds light on the regulation of PI3K/AKT/mTOR, and its role in controlling autophagy and associated apoptosis during the progression and metastasis of oral squamous type of malignancy (OSCC). In addition, we reviewed in detail the upstream activators and the downstream effectors of PI3K/AKT/mTOR signaling as potential therapeutic targets for oral cancer treatment.


Assuntos
Autofagia , Neoplasias Bucais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Autofagia/fisiologia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética
4.
Gen Physiol Biophys ; 43(3): 231-242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774923

RESUMO

Vascular endothelial cell functions affect lower extremity arteriosclerosis obliterans (LEASO), while alpha-2-macroglobulin (A2M) and CCCTC-binding factor (CTCF) are closely related to the function of such cells. This paper aims to identify the influences of CTCF on vascular endothelial cells in LEASO by regulating A2M. A rat model of LEASO was established to measure intima-media ratio, blood lipid, and inflammatory factor levels. By constructing LEASO cell models, cell viability and apoptosis were assayed, while autophagy-related proteins, CTCF and A2M levels in femoral artery tissues and HUVECs were determined. The transcriptional regulation of CTCF on A2M was verified. In LEASO rat models, femoral artery lumen was narrowed and endothelial cells were disordered; levels of total cholesterol, IL-1, and TNF-α enhanced, and HDL-C decreased, with strong expression of A2M and low expression of CTCF. The viability of ox-LDL-treated HUVECs was decreased, together with higher apoptosis, lower LC3II/I expression, and higher p62 expression, which were reversed by sh-A2M transfection. Overexpression of CTCF inhibited A2M transcription, promoted the viability and autophagy of HUVECs, and decreased apoptosis. Collectively, CTCF improves the function of vascular endothelial cells in LEASO by inhibiting A2M transcription.


Assuntos
Arteriosclerose Obliterante , Fator de Ligação a CCCTC , Células Endoteliais da Veia Umbilical Humana , Ratos , Fator de Ligação a CCCTC/metabolismo , Animais , Humanos , Arteriosclerose Obliterante/metabolismo , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Transcrição Gênica , Ratos Sprague-Dawley , Extremidade Inferior/irrigação sanguínea , Apoptose , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Sobrevivência Celular , Autofagia
5.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775785

RESUMO

Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagossomos , Autofagia , Autofagossomos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Glucose/metabolismo , Células HeLa
6.
FASEB J ; 38(10): e23677, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775792

RESUMO

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Assuntos
Artemisininas , Autofagia , Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Artemisininas/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Camundongos , Ferroptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
7.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
8.
Mol Med ; 30(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773376

RESUMO

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Assuntos
Autofagia , Proteína Beclina-1 , Isquemia Encefálica , Glucosídeos Iridoides , Neurônios , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Masculino , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Adenosina/análogos & derivados
9.
Chem Commun (Camb) ; 60(42): 5514-5517, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38693792

RESUMO

In this study, we propose a novel therapy system composed of UiO-66 nanoparticles, which contain quercetin combined with chloroquine (UQCNP), to achieve dual autophagy-ubiquitination blockade. Through UiO-66 NP drug loading, the solubility of quercetin (a proteasome inhibitor) was improved under physiological conditions, thereby increasing its effective concentration at the tumor site. The cell experiment results showed that UQCNP significantly increased the apoptosis rate of 4T1 cells by 73.6%, which was significantly higher than other groups. Transmission electron microscopy results showed that the autophagosome of cells in the UQCNP treatment group was significantly lower than that in other treatment groups. Moreover, western blot results showed that, compared with other groups, LC3 expression and proteasome activity (p < 0.01), as well as the tumor volume of mice treated with UQCNP (p < 0.01) were significantly reduced. These results indicate that UQCNP achieves effective tumor therapy by blocking the autophagy and proteasome pathways synchronously.


Assuntos
Autofagia , Cloroquina , Nanopartículas , Quercetina , Ubiquitinação , Quercetina/farmacologia , Quercetina/química , Cloroquina/farmacologia , Cloroquina/química , Animais , Autofagia/efeitos dos fármacos , Camundongos , Nanopartículas/química , Ubiquitinação/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Humanos
10.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763774

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Assuntos
Autofagia , Bleomicina , Autofagia/efeitos dos fármacos , Humanos , Animais , Células A549 , Camundongos , Bleomicina/farmacologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Masculino
11.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727063

RESUMO

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Assuntos
Autofagia , Antígeno B7-H1 , Imunoterapia , Nanopartículas , Oxirredução , Autofagia/efeitos dos fármacos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Animais , Humanos , Camundongos , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
12.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
13.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731434

RESUMO

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Assuntos
Apoptose , Canabidiol , Neoplasias , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Canabidiol/química , Humanos , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Autofagia/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
14.
Autoimmunity ; 57(1): 2351872, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38739691

RESUMO

Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.


Assuntos
Doenças Autoimunes , Autofagia , Humanos , Autofagia/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Animais , Transdução de Sinais/imunologia , Terapia de Alvo Molecular
15.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725841

RESUMO

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Assuntos
Autofagia , Senescência Celular , Degeneração do Disco Intervertebral , Proteínas de Membrana , Núcleo Pulposo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Senescência Celular/fisiologia , Ratos , Masculino , Ratos Sprague-Dawley , Humanos , Camundongos Endogâmicos C57BL
16.
Int J Biol Sci ; 20(7): 2532-2554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725847

RESUMO

Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.


Assuntos
Autofagia , Estilo de Vida , Humanos , Animais , Envelhecimento , Doenças Neurodegenerativas/metabolismo
17.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725855

RESUMO

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Assuntos
Autofagia , Lisossomos , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal
18.
Int J Biol Sci ; 20(7): 2698-2726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725864

RESUMO

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/ß-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/ß-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , RNA Longo não Codificante , Via de Sinalização Wnt , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Autofagia/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais
19.
Cell Commun Signal ; 22(1): 258, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711131

RESUMO

Although bortezomib (BTZ) is the cornerstone of anti-multiple myeloma (MM) therapy, the inevitable primary and secondary drug resistance still seriously affects the prognosis of patients. New treatment strategies are in need. Sodium-calcium exchanger 1 (NCX1) is a calcium-permeable ion transporter on the membrane, and our previous studies showed that low NCX1 confers inferior viability in MM cells and suppressed osteoclast differentiation. However, the effect of NCX1 on BTZ sensitivity of MM and its possible mechanism remain unclear. In this study, we investigated the effect of NCX1 on BTZ sensitivity in MM, focusing on cellular processes of autophagy and cell viability. Our results provide evidence that NCX1 expression correlates with MM disease progression and low NCX1 expression increases BTZ sensitivity. NCX1/Ca2+ triggered autophagic flux through non-canonical NFκB pathway in MM cells, leading to attenuated the sensitivity of BTZ. Knockdown or inhibition of NCX1 could potentiate the anti-MM activity of BTZ in vitro and vivo, and inhibition of autophagy sensitized NCX1-overexpressing MM cells to BTZ. In general, this work implicates NCX1 as a potential therapeutic target in MM with BTZ resistance and provides novel mechanistic insights into its vital role in combating BTZ resistance.


Assuntos
Autofagia , Bortezomib , Mieloma Múltiplo , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Humanos , Autofagia/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Camundongos , Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos
20.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712979

RESUMO

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Angiotensina II , Apoptose , Autofagia , Flavonoides , Miócitos Cardíacos , Transdução de Sinais , Serina-Treonina Quinases TOR , Flavonoides/farmacologia , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA