Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38660981

RESUMO

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Assuntos
Avena , Germinação , Sementes , Raios Ultravioleta , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Avena/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Estresse Salino/efeitos dos fármacos , Plântula/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cloreto de Sódio
2.
PLoS One ; 17(1): e0262494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020774

RESUMO

Avena fatua and A. ludoviciana (commonly known as wild oats) are the most problematic winter grass species in fallows and winter crops in the northeast region of Australia. A series of experiments were conducted to evaluate the performance of glyphosate and alternative post-emergence herbicides on A. fatua and A. ludoviciana. This study reports the world's first glyphosate-resistant (GR) biotypes of A. fatua and A. ludoviciana. The glyphosate dose required to kill 50% of the plants (LD50) and to reduce 50% of the biomass (GR50) for the GR biotype of A. fatua was 556 g a.e./ha and 351 g a.e./ha, respectively. These values for A. ludoviciana were 848 g a.e./ha and 289 g a.e./ha. Regardless of the growth stage (3-4 or 6-7 leaf stages), clethodim (120 g a.i./ha), haloxyfop (78 g a.i./ha), pinoxaden (20 g a.i./ha), and propaquizafop (30 g a.i./ha) were the best alternative herbicide options for the control of A. fatua and A. ludoviciana. The efficacy of butroxydim (45 g a.i./ha), clodinafop (120 g a.i./ha), imazamox + imazapyr (36 g a.i./ha), and paraquat (600 g a.i./ha) reduced at the advanced growth stage. Glufosinate (750 g a.i./ha), flamprop (225 g a.i./ha), and pyroxsulam + halauxifen (20 g a.i./ha) did not provide effective control of Avena species. This study identified alternative herbicide options to manage GR biotypes of A. fatua and A. ludoviciana.


Assuntos
Avena/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Avena/classificação , Avena/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Glicina/farmacologia , Glifosato
3.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946373

RESUMO

The oat (Avena sativa L.) is a grain of the Poaceae grass family and contains many powerful anti-oxidants, including avenanthramides as phenolic alkaloids with anti-inflammatory, anti-oxidant, anti-itch, anti-irritant, and anti-atherogenic activities. Here, the treatment of germinating oats with methyl jasmonate (MeJA) or abscisic acid (ABA) resulted in 2.5-fold (582.9 mg/kg FW) and 2.8-fold (642.9 mg/kg FW) increase in avenanthramide content, respectively, relative to untreated controls (232.6 mg/kg FW). Moreover, MeJA and ABA co-treatment synergistically increased avenanthramide production in germinating oats to 1505 mg/kg FW. Individual or combined MeJA and ABA treatment increased the expression of genes encoding key catalytic enzymes in the avenanthramide-biosynthesis pathway, including hydroxycinnamoyl-CoA:hydrocyanthranilate N-hydroxycinnamoyl transferase (HHT). Further analyses showed that six AsHHT genes were effectively upregulated by MeJA or ABA treatment, especially AsHHT4 for MeJA and AsHHT5 for ABA, thereby enhancing the production of all three avenanthramides in germinating oats. Specifically, AsHHT5 exhibited the highest expression following MeJA and ABA co-treatment, indicating that AsHHT5 played a more crucial role in avenanthramide biosynthesis in response to MeJA and ABA co-treatment of germinating oats. These findings suggest that elicitor-mediated metabolite farming using MeJA and ABA could be a valuable method for avenanthramide production in germinating oats.


Assuntos
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Avena/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Germinação , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , ortoaminobenzoatos/metabolismo , Antioxidantes/metabolismo , Avena/efeitos dos fármacos , Produção Agrícola , Germinação/efeitos dos fármacos
4.
Bioengineered ; 12(1): 516-526, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33550896

RESUMO

In order to isolated and identified the bacterial strains from wheat rhizosphere and evaluated the effect of different concentration of bacterial fermentation broth on the wild oats weed growth. This experiment carried out the separation and purification of dominant bacterial strains from the wheat rhizosphere soil, and performed the fermentation broth biological activity assessment by measured the seed germination and plant growth from 20 wheat varieties. The results had shown that the bacterial fermentation broth inhibits the growth of wild oat seedlings and plants to varying degrees, bacterial strains of X3, X4, X8, X12, X16 and X20 has certain level of inhibition activity and X20 has the highest herbicidal effectiveness. According to molecular biology identification, obtained superior bacterial strains X20 was Bacillus as potentially inhibitor for developing of bacterial-based bioherbicides for wild oats weed control management in the wheat field.


Assuntos
Avena/efeitos dos fármacos , Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Herbicidas/farmacologia , Triticum/microbiologia , Agentes de Controle Biológico/metabolismo , Fermentação , Herbicidas/metabolismo , Rizosfera , Plântula/efeitos dos fármacos , Controle de Plantas Daninhas
5.
Sci Rep ; 11(1): 1572, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452441

RESUMO

Knowledge about the fitness cost imposed by herbicide resistance in weeds is instrumental in devising integrated management methods. The present study investigated the germination response of ACCase-resistant (R) and susceptible (S) winter wild oat under different environmental conditions. The DNA of the plants was sequenced after being extracted and purified. The segregated F2 seeds were subjected to various temperatures, water potentials, NaCl concentrations, different pHs, darkness conditions, and burial depths. The results of the sequencing indicated that Ile-2041-Asn mutation is responsible for the evolution of resistance in the studied winter wild oat plants. The seeds were able to germinate over a wide range of temperatures, osmotic potentials, NaCl concentrations, and pHs. Germination percentage of R and S seeds under dark and light conditions was similar and ranged from 86.3 to 88.3%. The highest emergence percentage for both R and S plants was obtained in 0, 1, and 2 cm depths and ranged from 66.6 to 70.3%. In overall, no differences were observed in the germination response between the R and S winter wild oat plants under all studied conditions. No fitness cost at seed level indicates that control of R winter wild oats is more difficult, and it is essential to adopt crop and herbicide rotation to delay the further evolution of resistance.


Assuntos
Avena/genética , Germinação/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/farmacologia , Avena/efeitos dos fármacos , Avena/metabolismo , Aptidão Genética/efeitos dos fármacos , Germinação/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética , Sementes/efeitos dos fármacos , Controle de Plantas Daninhas/métodos
6.
PLoS One ; 15(10): e0240944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112902

RESUMO

Wheat (Triticum aestivum L) is among the most important cereal crops widely cultivated in the world. Wild oat (Avena fatua L.) competes with wheat for moisture, sunlight, space and nutrition. The successful management of weeds requires sound knowledge of their biology and response to different herbicides. This study inferred the impact of different constant temperature regimes and seed burial depths on seedling emergence and biomass production of wild oat. Moreover, the impact of different post-emergence herbicides applied at different growth stages on biomass production of wild oat was tested. The influence of different wild oat-wheat density (WWD) combinations on biomass production of wheat and wild oat was also inferred. Different constant temperature regimes significantly altered seed germination and biomass production of wild oat. The highest seed germination percentage and biomass production were noted under 15°C and 20°C, whereas the lowest values were recorded under 30°C. Similarly, days to start emergence, seedling emergence percentage and biomass production of wild oat was significantly affected by different seed burial depths. The lowest and the highest values of these parameters were observed under 4 and 10 cm depth, respectively. Different post-emergence herbicides and wild oat growth stages significantly altered biomass production. The highest reduction in fresh and dry biomass was recorded with herbicides' application at 2-4 leaf stage compared with anthesis stage. Clodinofop resulted in higher reduction of fresh biomass, whereas higher reduction in dry biomass was noted with Sulfosulfuron. Seed germination of both species was not affected by different WWD combinations, except for the treatment where no seed was sown of both species. These results indicate that deep burial of seeds could prevent seedling emergence, whereas post-emergence herbicides must be applied at 2-4 leaf stage of wild oat for its effective management.


Assuntos
Avena/efeitos dos fármacos , Avena/crescimento & desenvolvimento , Herbicidas/administração & dosagem , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Biomassa , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos
7.
Ecotoxicol Environ Saf ; 194: 110331, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146199

RESUMO

In this paper, comparison of ecotoxicological and herbicidal effect of newly synthesized N­[(phosphono)(aryl)methyl]glycines 1a-g (C-substituted glyphosate derivatives) with pure glyphosate (N-phosphonomethylglycine) (2) was demonstrated. All of tested glyphosate derivatives (1a-g) in contrast to glyphosate, were found to be completely safe for oat (Avena sativa) and classified as not harmful for marine bacteria Aliivibrio fischeri. Compounds 1a-g were also found rather harmless to radish (Raphanus sativus) as compared to N-phosphonomethylglycine, but they were moderately toxic against freshwater crustaceans Heterocypris incongruens. One of synthesized compounds, namely N-[(phosphono)(4-hydroxyphenyl)methyl]glycine (1f) was found to possess stronger herbicidal properties against gallant soldier (Galinsoga parviflora) and common sorrel (Rumex acetosa) when compared to pure glyphosate and demonstrated total death of these weeds being ranked 1 in the European Weed Research Council (EWRC) scale. Considering lower phytotoxicity of compound 1f against cultivated plants and tested microorganisms when compared to pure glyphosate, this aminophosphonate may be good candidate for further, more comprehensive study toward its agrochemical application, especially that this active agent demonstrated much stronger herbicidal properties than N-phosphonomethylglycine.


Assuntos
Ecotoxicologia , Glicina/análogos & derivados , Herbicidas/toxicidade , Agricultura , Aliivibrio fischeri/efeitos dos fármacos , Animais , Avena/efeitos dos fármacos , Crustáceos/efeitos dos fármacos , Glicina/toxicidade , Herbicidas/química , Plantas Daninhas/efeitos dos fármacos , Raphanus/efeitos dos fármacos , Testes de Toxicidade , Glifosato
8.
BMC Plant Biol ; 20(1): 104, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138669

RESUMO

BACKGROUND: Loss of vigor caused by seed aging adversely affects agricultural production under natural conditions. However, priming is an economical and effective method for improving the vigor of aged seeds. The objective of this study was to test the effectiveness of exogenous ascorbic acid (ASC) and glutathione (GSH) priming in the repairing of aged oat (Avena sativa) seeds, and to test the hypothesis that structural and functional systems in mitochondria were involved in this process. RESULTS: Oat seeds were artificially aged for 20 days at 45 °C, and were primed with solutions (1 mmol L- 1) of ASC, GSH, or ASC + GSH at 20 °C for 0.5 h before or after their aging. Seed germination, antioxidant enzymes in the ASC-GSH cycle, cytochrome c oxidase (COX) and mitochondrial malate dehydrogenase (MDH) activities, and the mitochondrial ultrastructures of the embryonic root cells were markedly improved in aged oat seeds through post-priming with ASC, GSH, or ASC + GSH, while their malondialdehyde and H2O2 contents decreased significantly (P < 0.05). CONCLUSION: Our results suggested that priming with ASC, GSH, or ASC + GSH after aging could effectively alleviate aging damage in oat seeds, and that the role of ASC was more effective than GSH, but positive effects of post-priming with ASC and GSH were not superior to post-priming with ASC in repairing aging damage of aged oat seeds. However, pre-priming with ASC, GSH, or ASC + GSH was not effective in oat seeds, suggesting that pre-priming with ASC, GSH, or ASC + GSH could not inhibit the occurrence of aging damage in oat seeds.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Avena/fisiologia , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Avena/efeitos dos fármacos , Glutationa/administração & dosagem , Mitocôndrias/metabolismo , Sementes/efeitos dos fármacos , Sementes/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31549913

RESUMO

The purpose of this study was to determine the effect of soil contamination with Hg on the yield and chemical composition of Avena sativa L. Mercury was incorporated into soil in amounts: 0, 50, 100 and 150 mg Hg·kg-1of soil. Zeolite, lime and bentonite were used to alleviate the soil contamination. Plants cultivated in Hg-polluted soil showed growth inhibition even in the presence of bentonite, lime or zeolite. Under elevated doses of Hg, the yield of aerial mass and roots decreased. The soil amendments mitigated the adverse effect of contamination, with lime and bentonite having a more beneficial influence on the yield than zeolite. The incremental contamination with mercury led to an increase in the content of Hg in the biomass of the plants. A much higher content of Hg was found in roots than in aerial parts. The inactivating substances applied to soil to some extent limited the increase in the content of this metal in all plant organs. Lime proved to be most effective in this regard. An increase in the soil contamination with mercury caused an increased content of nitrogen and potassium in plant organs and a decrease content of phosphorus.


Assuntos
Antídotos/farmacologia , Avena/efeitos dos fármacos , Mercúrio/toxicidade , Poluentes do Solo/toxicidade , Avena/química , Avena/crescimento & desenvolvimento , Avena/metabolismo , Biomassa , Recuperação e Remediação Ambiental , Mercúrio/análise , Mercúrio/metabolismo , Nutrientes/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
10.
PLoS One ; 14(10): e0223600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596877

RESUMO

Cover crop suppression with glyphosate-based herbicides (GBHs) represents a common agricultural practice. The objective of this study was to compare rhizospheric microbial communities of A. sativa plants treated with a GBH relative to the mechanical suppression (mowing) in order to assess their differences and the potential implications for soil processes. Samples were obtained at 4, 10, 17 and 26 days post-suppression. Soil catabolic profiling and DNA-based methods were applied. At 26 days, higher respiration responses and functional diversity indices (Shannon index and catabolic evenness) were observed under glyphosate suppression and a neat separation of catabolic profiles was detected in multivariate analysis. Sarcosine and Tween 20 showed the highest contribution to this separation. Metabarcoding revealed a non-significant effect of suppression method on either alpha-diversity metrics or beta-diversity. Conversely, differences were detected in the relative abundance of specific bacterial taxa. Mesorhizobium sequences were detected in higher relative abundance in glyphosate-treated plants at the end of the experiment while the opposite trend was observed for Gaiella. Quantitative PCR of amoA gene from ammonia-oxidizing archaea showed a lower abundance under GBH suppression again at 26 days, while ammonia-oxidizing bacteria remained lower at all sampling times. Broad host range plasmids IncP-1ß and IncP-1ε were exclusively detected in the rhizosphere of glyphosate-treated plants at 10 days and at 26 days, respectively. Overall, our study demonstrates differential effects of suppression methods on the abundance of specific bacterial taxa, on the physiology and mobile genetic elements of microbial communities while no differences were detected in taxonomic diversity.


Assuntos
Avena/microbiologia , Glicerol/análogos & derivados , Glicina/análogos & derivados , Herbicidas/farmacologia , Metagenoma , Microbiota/efeitos dos fármacos , Rizosfera , Archaea/genética , Avena/efeitos dos fármacos , Código de Barras de DNA Taxonômico , Glicerol/farmacologia , Glicina/farmacologia , Mesorhizobium/genética , Metagenômica , Microbiota/genética
11.
Plant Signal Behav ; 14(10): e1651183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31382811

RESUMO

Salicylic acid (SA) is involved in several plant processes including responses to abiotic stresses. Although SA is thought to interact with other regulatory molecules in a complex way, currently, little information is available regarding its molecular mechanisms of action in response to abiotic stresses. In a previous work, we observed that drought-resistant oat plants significantly increased their SA levels as compared with a susceptible cultivar. Furthermore, exogenous SA treatment alleviated drought symptoms. Here, we investigated the interaction between SA and polyamine biosynthesis during drought responses in oat and revealed that SA regulated polyamine biosynthesis through changes in polyamine gene expression. Overall, SA treatment decreased the levels of putrescine under drought conditions while increased those of spermine. This correlates with the downregulation of the ADC gene and upregulation of the AdoMetDC gene. Based on the presented results, we propose that SA modulates drought responses in oat by regulating polyamine content and biosynthesis.


Assuntos
Avena/metabolismo , Vias Biossintéticas , Secas , Poliaminas/metabolismo , Ácido Salicílico/farmacologia , Avena/efeitos dos fármacos , Avena/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
12.
Ecotoxicol Environ Saf ; 182: 109430, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31306921

RESUMO

Agronomic strategies as intercropping might be applied to reduce plant-available copper (Cu) in Cu-contaminated soils. Thus, our aim was to characterize two different oat cultivars, Avena sativa L. cv. Fronteira and cv. Perona for their ability to tolerate and/or phytostabilize Cu. Copper toxicity reduced plant biomass of both cultivars. The exudate analysis revealed the presence of phenolic compounds and phytosiderophores, yet with a different pattern between the cultivars: cv. Fronteira showed a Cu-concentration and time-dependent release of phenolic compounds, while cv. Perona down-regulated this release during the second week of treatment. Copper concentration increased linearly in all the tissues analysed with increasing Cu concentration showing yet a different compartmentalization: cv. Fronteira and cv. Perona preferentially accumulated Cu in the apoplasm and symplast, respectively. This higher accumulation of Cu in the apoplasm strongly reduces the available binding sites, leading to a competitive absorption with other macro-and micronutrients (e.g. Ca, Mn, Zn). Furthermore, in both cultivars Cu toxicity led to a significant reduction of shoot phosphorus content. The ionomic profile and compartmentalization of Cu together with the root activities demonstrate the different tolerance mechanism towards Cu toxicity of the two oat cultivars. In particular, cv. Fronteira seems to adopt an exclusion strategy based on accumulating Cu in the apoplasm and on the exudation of phenolic compounds. Thus, this cultivar could reduce the mobility and the consequent soil bioavailability of Cu playing an important role as phytostabilizer plant in intercropping systems in Cu-contaminated vineyards or orchards.


Assuntos
Avena/efeitos dos fármacos , Cobre/toxicidade , Poluentes do Solo/toxicidade , Avena/química , Disponibilidade Biológica , Biomassa , Cobre/análise , Poluição Ambiental/análise , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
13.
Sci Rep ; 9(1): 7961, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138849

RESUMO

Nitrogen fertilizer application and planting densities were key limiting factor for the physiological metabolism and growth of Avena sativa L. In the paper, it was set five nitrogen fertilizer application (including: N1:225 kg/hm2, N2:300 kg/hm2, N3:375 kg/hm2, N4:450 kg/hm2, N5:525 kg/hm2) and four planting densities (including M1:3 million plants/hm2, M2:3.5 million plants/hm2, M3:4 million plants/hm2, M4:4.5 million plants/hm2), and measure plant height, aboveground biomass, underground biomass, total biomass, stem biomass, leaf biomass, root biomass and ear biomass, and calculate stem/leaf ratio, root/crown ratio, stem contribution rate, leaf contribution rate, root contribution rate and spike contribution rate, to study the effect of density and nitrogen fertilizer on height, biomass and material distribution of Avena sativa L to provide scientific basis for water and fertilizer management of Avena sativa L in Horqin Sandy Land (Science and Technology Park of Inner Mongolia university for nationalities). The results showed, The main purpose was to harvest aboveground biomass such as oat stem and leaf, the optimal density and nitrogen fertilizer combination was M4 and N3, and aboveground biomass was 4254.96 g/m2 (2017) and 4226.21 g/m2 (2018). Under the same planting density, the height, aboveground biomass and underground biomass of Avena sativa L all showed first increased and then decreased with the rising of fertilizer application and the biggest height value appeared at N3. Under the same nitrogen fertilizer application, the height indicated increased gradually with the rising of density, and higher biomass was obtained under lower nitrogen fertilizer application and higher planting density conditions (such as:N1 conditions, the biggest value of underground biomass and total biomass was obtained under M1 condition), and under higher nitrogen fertilizer application conditions the higher value of biomass was obtained under lower planting density condition (M1 (2017) and M2 (2018) under the condition of N5 treatment, the aboveground biomass and total biomass were the highest, while M4 (2017) and M3 (2018) underground biomass was the highest.). Under same nitrogen fertilizer application conditions, the root/shoot ratio and stem/leaf ratio all showed increased first and then decreased with the rising of density. Under same density conditions, the root/shoot ratio and stem/leaf ratio indicated different variation laws with different nitrogen fertilizer application amount. The changes laws of root contribution rate, stem contribution rate, leaf contribution rate and ear contribution rate were different due to density and nitrogen fertilizer application.


Assuntos
Avena/efeitos dos fármacos , Produção Agrícola/métodos , Nitrogênio/farmacologia , Plântula/efeitos dos fármacos , Irrigação Agrícola/métodos , Avena/crescimento & desenvolvimento , Biomassa , China , Fertilizantes/análise , Humanos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Solo
14.
Chemosphere ; 226: 800-808, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30965251

RESUMO

Poly(2-oxazoline) polymers have found extensive application in the preparation of microcapsules for biomedical purposes. However, there is a scarcity of information related to their ecotoxicological assessment. Therefore, in this study, we focused on the ecotoxicity of selected polyethylenimines (PEIs) including poly(2-ethyl-2-oxazoline) (PEtOx) as an N-acyl-substituted PEI, linear polyethylenimine (LPEI) and branched polyethylenimine (BPEI). Oat (a monocotyledon) (Avena sativa) and radish (a dicotyledon) (Raphanus sativus) were selected as the representative plants, which are recommended by the Organization for Economic Cooperation and Development (OECD) 208 as the standard to test for plant growth. Shoot and root length, fresh and dry matter, level of total nitrogen in green parts of the plants, as well as total chlorophyll and carotenoids were determined. Phytotoxicity of all the tested parameters was dependent on the concentration of the examined polymers in the soil as well as on the time of their incubation in the soil. According to our results, the amount of nitrogen in green parts of the plants was increased compared to the control plants, which revealed the uptake of the plant-available form of nitrogen released from the tested PEIs. This was especially true for the plants treated with LPEI. Ecotoxicological impact of the incubated polymers in the soil against marine bacteria Allivibrio fischeri proved that, the all tested polyethylenimines may be classified as not harmful to aquatic microorganisms.


Assuntos
Ecotoxicologia , Fertilizantes , Nitrogênio/metabolismo , Polietilenoimina/química , Organismos Aquáticos/efeitos dos fármacos , Avena/efeitos dos fármacos , Avena/crescimento & desenvolvimento , Bactérias , Desenvolvimento Vegetal/efeitos dos fármacos , Polietilenoimina/farmacologia , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento
15.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866540

RESUMO

Melatonin (MT; N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that has been demonstrated to play an important role in plant growth, development, and regulation of environmental stress responses. Studies have been conducted on the role of the exogenous application of MT in a few species, but the potential mechanisms of MT-mediated stress tolerance under salt stress are still largely unknown. In this study, naked oat seedlings under salt stress (150 mM NaCl) were pretreated with two different concentrations of MT (50 and 100 µM), and the effects of MT on the growth and antioxidant capacity of naked oat seedlings were analyzed to explore the regulatory effect of MT on salt tolerance. The results showed that pretreating with different concentrations of MT promoted the growth of seedlings in response to 150 mM NaCl. Different concentrations of MT reduced hydrogen peroxide, superoxide anion, and malondialdehyde contents. The exogenous application of MT also increased superoxide dismutase, peroxidase, catalase, and ascorbate peroxide activities. Chlorophyll content, leaf area, leaf volume, and proline increased in the leaves of naked oat seedlings under 150 mM NaCl stress. MT upregulated the expression levels of the lipid peroxidase genes lipoxygenase and peroxygenase, a chlorophyll biosynthase gene (ChlG), the mitogen-activated protein kinase genes Asmap1 and Aspk11, and the transcription factor genes (except DREB2), NAC, WRKY1, WRKY3, and MYB in salt-exposed MT-pretreated seedlings when compared with seedlings exposed to salt stress alone. These results demonstrate an important role of MT in the relief of salt stress and, therefore, provide a reference for managing salinity in naked oat.


Assuntos
Antioxidantes/farmacologia , Avena/crescimento & desenvolvimento , Melatonina/farmacologia , Proteínas de Plantas/genética , Tolerância ao Sal , Avena/efeitos dos fármacos , Avena/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxidos/metabolismo
16.
Sci Total Environ ; 666: 472-479, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802662

RESUMO

Mercury is a toxic element that becomes a problem when present at high concentrations in soils. Mercury toxicity in soils varies depending on chemical species, concentration, exposure routes, and organism vulnerability. There is little information regarding the toxicity of Hg in tropical soils, especially for establishing safe levels of this pollutant. The purpose of this study was to investigate Hg concentrations in two tropical soils and their effect on oats and common beans, as well as on soil biological attributes. The experiment was carried out in a greenhouse, following ISO 11.269-2 and OECD-208 guidelines. Oat and common bean were cultivated in a Typic Hapludox (TyHpx) and Rhodic Acrudox (RhAcx) contaminated with HgCl2 at the following concentrations: 0, 2.5, 5.0, 10.0, 20.0, 40.0, and 80.0 mg of Hg kg-1 of dry soil. The biological variables analyzed were seedling emergence, vegetative growth, chlorophyll content (SPAD index), gas exchange (photosynthetic rate, internal CO2 concentration, transpiration rate, and stomatal conductance), and Hg concentration and accumulation in shoot dry matter. Microbial biomass carbon, soil basal respiration, and metabolic quotient (qCO2) were also analyzed. Due to the sorptive characteristics of TyHpx, it had higher Hg concentrations than RhAcx. Mercury showed toxic effects on both oat and common bean species. However, common bean was affected only at concentrations higher than 20 mg kg-1. The microbial community showed high sensitivity to soil Hg concentrations, but external factors, such as the plant species cultivated, influenced the sensitivity of the community. The microbiota was most sensitive in pots with common bean, and this effect was more pronounced at low clay and low organic matter contents (TyHpx). In this study, the concentration of 0.36 mg kg-1 was critical for Hg in these soils, based on its deleterious effects on oat and common bean and on biological soil attributes.


Assuntos
Avena/efeitos dos fármacos , Mercúrio/efeitos adversos , Phaseolus/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Solo/química , Avena/crescimento & desenvolvimento , Brasil , Phaseolus/crescimento & desenvolvimento
17.
Chemosphere ; 222: 381-390, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30711727

RESUMO

This paper discusses the impact of two nitrofuran-derived drugs, namely furazolidone and nitrofurantoin on growth of oat and common radish as well as their impact on bacteria Allivibrio fischeri and crustaceans Heterocypris incongruens. Results indicated that both compounds were highly phytotoxic for radish (R. sativus) being simultaneously nearly not harmful for oat (A. sativa). Growing inhibition of shoots, roots, fresh matter and photosynthetic pigments is correlated with growing concentration of drugs in soil. Ecotoxicological impact of both compounds on model luminescence bacteria Aliivibrio fischeri and freshwater crustaceans Heterocypris incongruens as a representative organisms of two different level of food chain, is also reported herein, and the obtained data show significant toxicity against these two organisms. Basing on obtained results, it was concluded that both nitrofuran drugs in case of distribution through environment, by improper utilisation after use or unplanned environmental intoxication with unused drugs may cause serious environmental problems and therefore both should be handled with a reasonable care at any step of their production or utilisation.


Assuntos
Ecotoxicologia , Furazolidona/toxicidade , Nitrofuranos/toxicidade , Nitrofurantoína/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Avena/efeitos dos fármacos , Avena/crescimento & desenvolvimento , Crustáceos/efeitos dos fármacos , Nitrofuranos/química , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
18.
J Sci Food Agric ; 99(1): 482-485, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808470

RESUMO

BACKGROUND: The aim of this study was to investigate whether the application of selenium (Se) ions directly to the leaf surface can protect plants against infection by the fungal toxin zearalenone (ZEA). The experiments were performed for the most common and agronomically important crops such as wheat, oat, and barley (both tolerant and sensitive varieties) because mycotoxin accumulation in plants is the cause of many diseases in animals and people. RESULTS: ZEA at a concentration of 10 µmol L-1 either alone or in combination with Se (5 µmol L-1 Na2 SeO4 ) was applied to the second leaf of seedlings. Visualization of leaf temperature profiles by infrared thermography demonstrated a decrease in temperature at the location of ZEA infection that was more noticeable in sensitive genotypes. The presence of Se significantly suppressed changes at the site of ZEA application in all tested plants, especially the tolerant genotypes. Microscopic observations confirmed that foliar administration of ZEA resulted in its penetration to deeper localized cells and that damage induced by ZEA (mainly to chloroplasts) decreased after Se application. Analyses of antioxidant enzymes demonstrated the involvement of Se in antioxidation mechanisms, in particular by activating SOD and CAT under ZEA-induced stress conditions. CONCLUSION: The foliar application of Se to seedling leaves may be a non-invasive method of protecting crops against the first steps of ZEA infection. © 2018 Society of Chemical Industry.


Assuntos
Avena/microbiologia , Hordeum/microbiologia , Folhas de Planta/efeitos dos fármacos , Selênio/farmacologia , Triticum/microbiologia , Zearalenona/análise , Avena/química , Avena/efeitos dos fármacos , Avena/genética , Produção Agrícola , Fungos/efeitos dos fármacos , Fungos/metabolismo , Genótipo , Hordeum/química , Hordeum/efeitos dos fármacos , Hordeum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Triticum/química , Triticum/efeitos dos fármacos , Triticum/genética , Zearalenona/metabolismo
19.
Planta ; 249(3): 719-738, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30370496

RESUMO

MAIN CONCLUSION: Germination of primary dormant wild oat caused by KAR1 or GA3 is associated with ACC accumulation and increased ethylene production shortly before radicle protrusion as a result of the non-transcriptional and transcriptional activation of ACS and ACO enzymes, respectively. Response to both compounds involves the modulation of ethylene sensitivity through ethylene receptor genes. Harvested Avena fatua caryopses are primary dormant and, therefore, germinated poorly at 20 °C. Karrikin 1 (KAR1), which action probably requires endogenous gibberellins (GAs), and gibberellin A3 (GA3) was found to induce dormant caryopses to germinate. The stimulatory effects were accompanied by the activation of the ethylene biosynthesis pathway and depended on undisturbed ethylene perception. KAR1 and GA3 promoted 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation during coleorhizae emergence and ethylene production shortly prior to the radicle protrusion, which resulted from the enhanced activity of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). The inhibitor of ACS adversely affected beneficial impacts of both KAR1 and GA3 on A. fatua caryopses germination, while the inhibitor of ACO more efficiently impeded the GA3 effect. The inhibitors of ethylene action markedly lowered germination in response to KAR1 and GA3. Gene expression studies preceded by the identification of several genes related to ethylene biosynthesis (AfACS6, AfACO1, and AfACO5) and perception (AfERS1b, AfERS1c, AfERS2, AfETR2, AfETR3, and AfETR4) provided further evidence for the engagement of ethylene in KAR1 and GA3 induced germination of A. fatua caryopses. Both AfACO1 and AfACO5 were upregulated, whereas AfACS6 remained unaffected by the treatment. This suggests the existence of different regulatory mechanisms of enzymatic activity, transcriptional for ACO and non-transcriptional for ACS. During imbibition in water, AfERS1b was stronger expressed than other receptor genes. In the presence of KAR1 or GA3, the expression of AfETR3 was substantially induced. Differential expression of ethylene receptor genes implies the modulation of caryopses sensitivity adjusted to ethylene availability and suggests the functional diversification of individual receptors.


Assuntos
Avena/metabolismo , Etilenos/biossíntese , Furanos/farmacologia , Germinação , Giberelinas/farmacologia , Dormência de Plantas/efeitos dos fármacos , Piranos/farmacologia , Avena/efeitos dos fármacos , Avena/genética , Avena/crescimento & desenvolvimento , Etilenos/metabolismo , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
20.
Mol Biol Rep ; 46(1): 415-424, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448893

RESUMO

Structural mutations providing herbicide resistance may cause a modification of the three dimensional structure of a protein which will lead to a decrease in the herbicide efficacy. Wild oat (Avena ludoviciana Durieu.) is an increasingly disruptive weed in areas of intensive cereal production, thus the aim of this research was to identify mutations conferring resistance to ACCase-inhibitor herbicides at greenhouse, laboratory and in silico scales. Among the selected biotypes, No. 3 in the position 1781 (Ile1781-Leu) and No. 14 in the position 2041 (Ile2041-Asn), showed resistance to ACCase-inhibitor. The above mutations were confirmed using the specific primers and PCR-based methods. Analysis of molecular docking indicated that residues of Trp1948 and Pro2001 are important in the binding site and showed remarkable variation in the mutation types. Using molecular dynamic simulation analysis, we demonstrated that mutation types changed the conformation of the enzyme. These changes resulted in compressed conformation in the active site, which limited the availability of binding herbicide-enzyme. In present, no crystallography molecular structure and modeling reported on the ACCase of plants and this study investigated interactions of clodinafop propargyl and ACCase CT domain in A. ludoviciana by modeling, docking and simulations for the first time. Totally, bioinformatics analysis as well as PCR-based method confirmed that herbicide resistance conferred by nucleotide mutations in the gene sequence.


Assuntos
Acetil-CoA Carboxilase/genética , Avena/efeitos dos fármacos , Propionatos/farmacologia , Piridinas/farmacologia , Acetil-CoA Carboxilase/antagonistas & inibidores , Avena/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Simulação de Acoplamento Molecular/métodos , Mutação , Proteínas de Plantas/genética , Propionatos/metabolismo , Piridinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA