Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
1.
ChemMedChem ; 16(22): 3463-3476, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34278724

RESUMO

Ghrelin is a pleiotropic feeding hormone which also has a pivotal role in the central nervous system. Upon the activation of its receptor, growth hormone secretagogue receptor (GHSR), the Gαq/11 -mediated and the ß-arrestin-mediated signaling pathways are activated. As the ß-arrestin pathway is a potential drug target, there is a strong need for ß-arrestin-biased GHSR modulators. Activation of the ß-arrestin pathway should inhibit the Gαq/11 -mediated calcium flux through internalization of the receptor. Hence, we used the antagonistic activity in the calcium assay as the first screening for the ß-arrestin activation. By conducting the second screening assay for the ß-arrestin activation based on extracellular signal regulated kinase (ERK) 1/2 phosphorylation, we discovered a putative ß-arrestin-biased superagonist. The activity of the compound was not completely blocked with the competitive antagonist, which implies that the effect is mediated, at least partly, by allosteric binding of the compound.


Assuntos
Azidas/farmacologia , Receptores de Grelina/química , beta-Arrestinas/agonistas , Azidas/síntese química , Azidas/química , Humanos , Estrutura Molecular , beta-Arrestinas/metabolismo
2.
Bioconjug Chem ; 32(8): 1431-1454, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34197073

RESUMO

Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.


Assuntos
Química Click/métodos , Reação de Cicloadição/métodos , Coloração e Rotulagem/métodos , Alcinos/síntese química , Alcinos/química , Animais , Azidas/síntese química , Azidas/química , Catálise , Humanos , Indicadores e Reagentes , Metais/química , Proteínas/análise
3.
Bioconjug Chem ; 32(8): 1455-1471, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34319077

RESUMO

Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a modular and bio-orthogonal approach that is being adopted for the efficient synthesis of organic and bioorganic compounds. It leads to the selective formation of 1,4-disubstituted 1,2,3-triazole units connecting readily accessible building blocks via a stable and biocompatible linkage. The vast array of the bioconjugation applications of click chemistry has been attributed to its fast reaction kinetics, quantitative yields, minimal byproducts, and high chemospecificity and regioselectivity. These combined advantages make click reactions quite suitable for the lead identification and the development of pharmaceutical agents in the fields of medicinal chemistry and drug discovery. In this review, we have outlined the key aspects, the mechanistic details and merits and demerits of the click reaction. In addition, we have also discussed the recent pharmaceutical applications of click chemistry, ranging from the development of anticancer, antibacterial, and antiviral agents to that of biomedical imaging agents and clinical therapeutics.


Assuntos
Química Click/métodos , Alcinos/síntese química , Alcinos/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Azidas/síntese química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição , Diagnóstico por Imagem/métodos , Descoberta de Drogas/métodos , Humanos , Triazóis/síntese química , Triazóis/química
4.
Org Lett ; 23(8): 3004-3009, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33830771

RESUMO

The assembly of guanosine and boronic acids produces anionic hydrogels (G-B hydrogels) that mimic the topology of the DNA G-quadruplex. We herein demonstrate an unconventional approach of using the G-B hydrogel as a supramolecular template that assembles the irreversible formation of DNA G-quadruplex-selective 1,4-triazole ligands from a pool of alkyne-azide building blocks. These generated ligands could also stabilize and strengthen the gel assembly.


Assuntos
Ácidos Borônicos/química , DNA/química , Alcinos/química , Azidas/síntese química , Azidas/química , Catálise , Química Click , Quadruplex G , Ligantes , Estrutura Molecular , Triazóis/síntese química , Triazóis/química
5.
Methods Mol Biol ; 2281: 151-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847957

RESUMO

Replication protein A (RPA) is an essential single-stranded DNA (ssDNA)-binding protein that sequesters ssDNA and protects it from nucleolytic degradation. The RPA-ssDNA nucleoprotein acts as a hub to recruit over two dozen DNA metabolic enzymes onto ssDNA to coordinate DNA replication, repair, and recombination. RPA functions as a heterotrimer composed of RPA70, RPA32, and RPA14 subunits and has multiple DNA-binding and protein-interaction domains. Several of these domains are connected by disordered linkers allowing RPA to adopt a wide variety of conformations on ssDNA. Here we describe a fluorescence-based tool to monitor the dynamics of select DNA-binding domains of RPA. Noncanonical amino acids are utilized to site-specifically engineer fluorescent probes in Saccharomyces cerevisiae RPA heterologously expressed in BL21 (DE3) and its derivatives. A procedure to synthesize 4-azido-L-phenylalanine (4AZP), a noncanonical amino acid, is also described. Sites for fluorophore positioning that produce a measurable change in fluorescence upon binding to ssDNA are detailed. This fluorescence enhancement through noncanonical amino acid (FEncAA) approach can also be applied to other DNA-binding proteins to investigate the dynamics of protein-nucleic acid interactions.


Assuntos
Azidas/síntese química , DNA de Cadeia Simples/metabolismo , Fenilalanina/análogos & derivados , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azidas/química , Replicação do DNA , Corantes Fluorescentes/química , Modelos Moleculares , Fenilalanina/síntese química , Fenilalanina/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos
6.
ACS Chem Biol ; 16(2): 389-396, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33524253

RESUMO

Protein poly-ADP-ribosylation (PARylation) is a heterogeneous and dynamic post-translational modification regulated by various writers, readers, and erasers. It participates in a variety of biological events and is involved in many human diseases. Currently, tools and technologies have yet to be developed for unambiguously defining readers and erasers of individual PARylated proteins or cognate PARylated proteins for known readers and erasers. Here, we report the generation of a bifunctional nicotinamide adenine dinucleotide (NAD+) characterized by diazirine-modified adenine and clickable ribose. By serving as an excellent substrate for poly-ADP-ribose polymerase 1 (PARP1)-catalyzed PARylation, the generated bifunctional NAD+ enables photo-cross-linking and enrichment of PARylation-dependent interacting proteins for proteomic identification. This bifunctional NAD+ provides an important tool for mapping cellular interaction networks centered on protein PARylation, which are essential for elucidating the roles of PARylation-based signals or activities in physiological and pathophysiological processes.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteoma/metabolismo , Azidas/síntese química , Azidas/metabolismo , Azidas/efeitos da radiação , Química Click , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/efeitos da radiação , Diazometano/análogos & derivados , Diazometano/metabolismo , Diazometano/efeitos da radiação , Células HEK293 , Humanos , NAD/síntese química , NAD/efeitos da radiação , Poli ADP Ribosilação , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteômica , Raios Ultravioleta
7.
ACS Appl Mater Interfaces ; 13(3): 4711-4722, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33444000

RESUMO

Realization of robust and facile surface functionalization processes is critical to biomaterials and biotechnology yet remains a challenge. Here, we report a new chemical approach that enables operationally simple and site-specific surface functionalization. The mechanism involves a catechol-copper redox chemistry, where the oxidative polymerization of an alkynyl catecholamine reduces Cu(II) to Cu(I), which in situ catalyzes a click reaction with azide-containing molecules of interest (MOIs). This process enables drop-coating and grafting of two- and three-dimensional solid surfaces in a single operation using as small as sub-microliter volumes. Generalizability of the method is shown for immobilizing MOIs of diverse structure and chemical or biological activity. Biological applications in anti-biofouling, cellular adhesion, scaffold seeding, and tissue regeneration are demonstrated, in which the activities or fates of cells are site-specifically manipulated. This work advances surface chemistry by integrating simplicity and precision with multipurpose surface functionalization.


Assuntos
Azidas/química , Materiais Biocompatíveis/química , Catecolaminas/química , Cobre/química , Células 3T3 , Animais , Azidas/síntese química , Materiais Biocompatíveis/síntese química , Incrustação Biológica/prevenção & controle , Catálise , Catecolaminas/síntese química , Química Click , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Oxirredução , Polimerização , Propriedades de Superfície
8.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498488

RESUMO

Novel zwitter-ionic nido-carboranyl azide 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was prepared by the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3. The solid-state molecular structure of nido-carboranyl azide was determined by single-crystal X-ray diffraction. 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was used for the copper(I)-catalyzed azide-alkyne cycloaddition with phenylacetylene, alkynyl-3ß-cholesterol and cobalt/iron bis(dicarbollide) terminal alkynes to form the target 1,2,3-triazoles. The nido-carborane-cholesterol conjugate 9-3ß-Chol-O(CH2)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 with charge-compensated group in a linker can be used as a precursor for preparation of liposomes for Boron Neutron Capture Therapy (BNCT). A series of novel zwitter-ionic boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane conjugated system was synthesized. Prepared conjugates contain a large amount of boron atom in the biomolecule and potentially can be used for BNCT.


Assuntos
Azidas/química , Compostos de Boro/química , Química Click , Azidas/síntese química , Boro/química , Compostos de Boro/síntese química , Terapia por Captura de Nêutron de Boro , Colesterol/química , Lipossomos/química , Estrutura Molecular
9.
Org Biomol Chem ; 19(10): 2203-2212, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33496698

RESUMO

Here were report the combination of biocompatible click chemistry of ω-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that ω-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, ω-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection.


Assuntos
Azidas/metabolismo , Esfingolipídeos/análise , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Animais , Azidas/síntese química , Compostos de Boro/síntese química , Compostos de Boro/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Química Click , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Esfingolipídeos/biossíntese
10.
Biointerphases ; 16(1): 011001, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33401918

RESUMO

Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.


Assuntos
Alcinos/química , Azidas/química , Materiais Biocompatíveis/química , Reação de Cicloadição , Hidrogéis/química , Injeções , Oxazóis/química , Alcinos/síntese química , Animais , Azidas/síntese química , Sobrevivência Celular , Derme/citologia , Módulo de Elasticidade , Fibroblastos/citologia , Humanos , Camundongos Endogâmicos C57BL , Espectroscopia de Prótons por Ressonância Magnética , Reologia
11.
Eur J Med Chem ; 209: 112889, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045660

RESUMO

To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 µM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of ß-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Antimaláricos/síntese química , Azidas/síntese química , Azidas/química , Cobre/química , Reação de Cicloadição , Células Hep G2 , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas/síntese química
12.
J Enzyme Inhib Med Chem ; 36(1): 85-97, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121288

RESUMO

SNAP-tag ® is a powerful technology for the labelling of protein/enzymes by using benzyl-guanine (BG) derivatives as substrates. Although commercially available or ad hoc produced, their synthesis and purification are necessary, increasing time and costs. To address this limitation, here we suggest a revision of this methodology, by performing a chemo-enzymatic approach, by using a BG-substrate containing an azide group appropriately distanced by a spacer from the benzyl ring. The SNAP-tag ® and its relative thermostable version (SsOGT-H5 ) proved to be very active on this substrate. The stability of these tags upon enzymatic reaction makes possible the exposition to the solvent of the azide-moiety linked to the catalytic cysteine, compatible for the subsequent conjugation with DBCO-derivatives by azide-alkyne Huisgen cycloaddition. Our studies propose a strengthening and an improvement in terms of biotechnological applications for this self-labelling protein-tag.


Assuntos
Azidas/química , Metilases de Modificação do DNA/metabolismo , Corantes Fluorescentes/química , Azidas/síntese química , Metilases de Modificação do DNA/química , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Cell Mol Neurobiol ; 41(5): 977-993, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424771

RESUMO

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand-protein contacts and its signaling complexes.


Assuntos
Analgésicos Opioides/metabolismo , Azidas/metabolismo , Encéfalo/metabolismo , Naltrexona/análogos & derivados , Marcadores de Fotoafinidade/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/síntese química , Animais , Azidas/síntese química , Encéfalo/efeitos dos fármacos , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/síntese química , Naltrexona/metabolismo , Marcadores de Fotoafinidade/síntese química , Ligação Proteica/fisiologia , Ensaio Radioligante/métodos
14.
Bioorg Chem ; 106: 104497, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261847

RESUMO

The virus SARS CoV-2, which causes the respiratory infection COVID-19, continues its spread across the world and to date has caused more than a million deaths. Although COVID-19 vaccine development appears to be progressing rapidly, scientists continue the search for different therapeutic options to treat this new illness. In this work, we synthesized five new 1-aryl-5-(3-azidopropyl)indol-4-ones and showed them to be potential inhibitors of the SARS CoV-2 main protease (3CLpro). The compounds were obtained in good overall yields and molecular docking indicated favorable binding with 3CLpro. In silico ADME/Tox profile of the new compounds were calculated using the SwissADME and pkCSM-pharmacokinetics web tools, and indicated adequate values of absorption, distribution and excretion, features related to bioavailability. Moreover, low values of toxicity were indicated for these compounds. And drug-likeness levels of the compounds were also predicted according to the Lipinski and Veber rules.


Assuntos
Antivirais/metabolismo , Azidas/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/metabolismo , Indóis/metabolismo , SARS-CoV-2/química , Antivirais/síntese química , Antivirais/farmacocinética , Azidas/síntese química , Azidas/farmacocinética , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacocinética , Indóis/síntese química , Indóis/farmacocinética , Internet , Simulação de Acoplamento Molecular , Ligação Proteica
15.
Curr Protoc Chem Biol ; 12(4): e85, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33207082

RESUMO

Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a commonly used polymerization methodology to generate synthetic polymers. The products of RAFT polymerization, i.e., RAFT polymers, have been widely employed in several biologically relevant areas, including drug delivery, biomedical imaging, and tissue engineering. In this article, we summarize a synthetic methodology to display an azide group at the chain end of a RAFT polymer, thus presenting a reactive site on the polymer terminus. This platform enables a click reaction between azide-terminated polymers and alkyne-containing molecules, providing a broadly applicable scaffold for chemical and bioconjugation reactions on RAFT polymers. We also highlight applications of these azide-terminated RAFT polymers in fluorophore labeling and for promoting organelle targeting capability. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the azide derivatives of chain transfer agent and radical initiator Basic Protocol 2: Installation of an azide group on the α-end of RAFT polymers Alternate Protocol: Installation of an azide group on the ω-end of RAFT polymers Basic Protocol 3: Click reaction between azide-terminated RAFT polymers and alkyne derivatives.


Assuntos
Azidas/química , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Polímeros/química , Engenharia Tecidual , Azidas/síntese química , Química Click , Polimerização , Polímeros/síntese química
16.
Org Biomol Chem ; 18(31): 6155-6161, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32716466

RESUMO

The aminated mimetics of 2-keto-3-deoxy-sugar acids such as the anti-influenza clinical drugs oseltamivir (Tamiflu) and zanamivir (Relenza) are important bioactive molecules. Development of synthetic methodologies for accessing such compound collections is highly desirable. Herein, we describe a simple, catalyst-free glycal diazidation protocol enabled by visible light-driven conditions. This new method requires neither acid promoters nor transition-metal catalysts and takes place at ambient temperature within 1-2 hours. Notably, the desired transformations could be promoted by thermal conditions as well, albeit with lower efficacy compared to the light-induced conditions. Different sugar acid-derived glycal templates have been converted into a range of 2,3-diazido carbohydrate analogs by harnessing this mild and scalable approach, leading to the discovery of new antiviral agents.


Assuntos
Antivirais/farmacologia , Azidas/farmacologia , Carboidratos/farmacologia , Temperatura Alta , Luz , Rhinovirus/efeitos dos fármacos , Açúcares Ácidos/farmacologia , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Azidas/síntese química , Azidas/química , Configuração de Carboidratos , Carboidratos/síntese química , Carboidratos/química , Testes de Sensibilidade Microbiana , Açúcares Ácidos/química
17.
Curr Protoc Nucleic Acid Chem ; 82(1): e112, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716612

RESUMO

RNAs with 5' functional groups have been gaining interest as molecular probes and reporter molecules. Copper-catalyzed azide-alkyne cycloaddition is one of the most straightforward methods to access such molecules; however, RNA functionalization with azide group has been posing a synthetic challenge. This article describes a simple and efficient protocol for azide functionalization of oligoribonucleotides 5'-end in solid-phase. An azide moiety is attached directly to the C5'-end in two steps: (i) -OH to -I conversion using methyltriphenoxyphosphonium iodide, and (ii) -I to -N3 substitution using sodium azide. The reactivity of the resulting compounds is exemplified by fluorescent labeling using both copper(I)-catalyzed (CuAAC) and strain-promoted (SPAAC) azide-alkyne cycloaddition reactions, ligation of two RNA fragments, and cyclization of short bifunctionalized oligonucleotides. The protocol makes use of oligoribonucleotides synthesized by standard phosphoramidite approach on solid support, using commercially available 2'-O-PivOM-protected monomers. Such a protection strategy eliminates the interference between the iodination reagent and silyl protecting groups (TBDMS, TOM) commonly used in RNA synthesis by phosphoramidite approach. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Solid-phase synthesis of oligoribonucleotide 5'-azides Basic Protocol 2: CuAAC labeling of oligoribonucleotide 5'-azides in solution Alternate Protocol 1: CuAAC labeling of oligoribonucleotide 5'-azides on solid support Basic Protocol 3: SPAAC labeling of oligoribonucleotide 5'-azides Basic Protocol 4: CuAAC ligation of oligoribonucleotide 5'-azides Basic Protocol 5: CuAAC cyclization of oligoribonucleotide 5'-azides Support Protocol: HPLC Purification.


Assuntos
Azidas/síntese química , Química Click , Corantes Fluorescentes/química , RNA/química , Técnicas de Síntese em Fase Sólida/métodos , Azidas/química , Ciclização , Soluções
18.
ACS Comb Sci ; 22(9): 440-445, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32691584

RESUMO

Conjugates between pharmaceuticals and small molecules enable access to a vast chemical space required for the discovery of new lead molecules with modified therapeutic potential. However, the dearth of specific chemical reactions that are capable of functionalizing drugs and bioactive natural products presents a formidable challenge for preparing their conjugates. Here, we report a support-free CuI-nanoparticle-catalyzed strategy for conjugating electron-deficient and electron-rich terminal alkynes with a ciprofloxacin methyl ester. Our conjugation technique exploits the late-stage functionalization of bioactive natural products such as tocopherol, vasicinone, amino acids, and pharmaceuticals such as aspirin and paracetamol to provide conjugates in excellent yields under mild and green conditions. This protocol also enabled the synthesis of (hetero)arene-ciprofloxacin 1,4-disubstituted 1,2,3-triazoles in good yields and high regioselectivities. These synthesized ciprofloxacin conjugates were evaluated in vitro for their antibacterial activity against a panel of relevant bacteria. A significant number of conjugates showed comparable activity against Gram-positive and Gram-negative bacteria. Moreover, some conjugates exhibited less toxicity than ciprofloxacin against two mammalian cell lines, suggesting the utility for the future investigation of these compounds for in vivo efficacy and pharmacokinetic studies.


Assuntos
Alcinos/farmacologia , Antibacterianos/farmacologia , Azidas/farmacologia , Ciprofloxacina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Alcinos/síntese química , Alcinos/química , Antibacterianos/síntese química , Antibacterianos/química , Azidas/síntese química , Azidas/química , Ciprofloxacina/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
19.
J Am Chem Soc ; 142(26): 11388-11393, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539355

RESUMO

Site selectivity represents a key challenge for non-directed C-H functionalization, even when the C-H bond is intrinsically reactive. Here, we report a copper-catalyzed method for benzylic C-H azidation of diverse molecules. Experimental and density functional theory studies suggest the benzyl radical reacts with a CuII-azide species via a radical-polar crossover pathway. Comparison of this method with other C-H azidation methods highlights its unique site selectivity, and conversions of the benzyl azide products into amine, triazole, tetrazole, and pyrrole functional groups highlight the broad utility of this method for target molecule synthesis and medicinal chemistry.


Assuntos
Azidas/síntese química , Compostos de Benzil/química , Cobre/química , Azidas/química , Catálise , Estrutura Molecular
20.
J Am Chem Soc ; 142(25): 11232-11243, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456423

RESUMO

Treatment of (ArL)CoBr (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin) with a stoichiometric amount of 1-azido-4-(tert-butyl)benzene N3(C6H4-p-tBu) furnished the corresponding four-coordinate organoazide-bound complex (ArL)CoBr(N3(C6H4-p-tBu)). Spectroscopic and structural characterization of the complex indicated redox innocent ligation of the organoazide. Slow expulsion of dinitrogen (N2) was observed at room temperature to afford a ligand functionalized product via a [3 + 2] annulation, which can be mediated by a high-valent nitrene intermediate such as a CoIII iminyl (ArL)CoBr(•N(C6H4-p-tBu)) or CoIV imido (ArL)CoBr(N(C6H4-p-tBu)) complex. The presence of the proposed intermediate and its viability as a nitrene group transfer reagent are supported by intermolecular C-H amination and aziridination reactivities. Unlike (ArL)CoBr(N3(C6H4-p-tBu)), a series of alkyl azide-bound CoII analogues expel N2 only above 60 °C, affording paramagnetic intermediates that convert to the corresponding Co-imine complexes via α-H-atom abstraction. The corresponding N2-released structures were observed via single-crystal-to-crystal transformation, suggesting formation of a Co-nitrenoid intermediate in solid-state. Alternatively, the alkyl azide-bound congeners supported by a more sterically accessible dipyrrinato scaffold tBuL (tBuL = 5-mesityl-(1,9-di-tert-butyl)dipyrrin) facilitate intramolecular 1,3-dipolar cycloaddition as well as C-H amination to furnish 1,2,3-dihydrotriazole and substituted pyrrolidine products, respectively. For the C-H amination, we observe that the temperature required for azide activation varies depending on the presence of weak C-H bonds, suggesting that the alkyl azide adducts serve as viable species for C-H amination when the C-H bonds are (1) proximal to the azide moiety and (2) sufficiently weak to be activated.


Assuntos
Azidas/química , Complexos de Coordenação/química , Pirrolidinas/síntese química , Triazóis/síntese química , Aminação , Azidas/síntese química , Cobalto/química , Complexos de Coordenação/síntese química , Reação de Cicloadição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA