Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Nat Commun ; 15(1): 4041, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740794

RESUMO

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Assuntos
Azotobacter vinelandii , Molibdoferredoxina , Nitrogenase , Selênio , Enxofre , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/metabolismo , Nitrogenase/metabolismo , Nitrogenase/química , Molibdoferredoxina/metabolismo , Molibdoferredoxina/química , Selênio/metabolismo , Selênio/química , Enxofre/metabolismo , Enxofre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
2.
Angew Chem Int Ed Engl ; 63(21): e202400273, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38527309

RESUMO

Nitrogenase reduces N2 to NH3 at its active-site cofactor. Previous studies of an N2-bound Mo-nitrogenase from Azotobacter vinelandii suggest binding of three N2 species via asymmetric belt-sulfur displacements in the two cofactors of its catalytic component (designated Av1*), leading to the proposal of stepwise N2 reduction involving all cofactor belt-sulfur sites; yet, the evidence for the existence of multiple N2 species on Av1* remains elusive. Here we report a study of ATP-independent, EuII/SO3 2--driven turnover of Av1* using GC-MS and frequency-selective pulse NMR techniques. Our data demonstrate incorporation of D2-derived D by Av1* into the products of C2H2- and H+-reduction, and decreased formation of NH3 by Av1* concomitant with the release of N2 under H2; moreover, they reveal a strict dependence of these activities on SO3 2-. These observations point to the presence of distinct N2 species on Av1*, thereby providing strong support for our proposed mechanism of stepwise reduction of N2 via belt-sulfur mobilization.


Assuntos
Azotobacter vinelandii , Nitrogênio , Nitrogenase , Nitrogenase/metabolismo , Nitrogenase/química , Azotobacter vinelandii/metabolismo , Azotobacter vinelandii/enzimologia , Nitrogênio/química , Nitrogênio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química
3.
J Inorg Biochem ; 227: 111690, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929539

RESUMO

Biological nitrogen fixation, the conversion of atmospheric dinitrogen into bioavailable ammonium, is exclusively catalyzed by the enzyme nitrogenase that is present in nitrogen-fixing organisms, the diazotrophs. So far, three different nitrogenase variants, encoded in their corresponding, distinct gene clusters, have been found in nature. Each one of these consists of a catalytic dinitrogenase component and a unique, ATP-dependent reductase, the Fe protein. The three variant nitrogenases differ in the composition of the active site and contain either molybdenum, vanadium or only iron in the dinitrogenase component. Here we present the 2.0 Å resolution crystal structure of the ADP-bound reductase component AnfH of the iron-only nitrogenase from the model diazotroph Azotobacter vinelandii. A comparison of this structure with the ones reported for the two other Fe protein homologs NifH and VnfH in the ADP-bound state shows that all are adopting the same conformation. However, cross-reactivity assays with the three nitrogenase homologs revealed AnfH to be compatible with iron-only nitrogenase and to a lesser degree with the vanadium-containing enzyme, but not with molybdenum nitrogenase.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Ferro/química , Nitrogenase/química , Domínios Proteicos
4.
FEMS Microbiol Lett ; 368(18)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34610116

RESUMO

Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin), acting as an electron donor for nitrogenase. However, the relative contribution of Rnf to nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defects under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of a fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between flavin mononucleotide and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.


Assuntos
Azotobacter vinelandii , Ferredoxinas , Fixação de Nitrogênio , Transferases , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Flavinas/química , Proteínas de Membrana/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Oxirredutases/metabolismo , Transferases/metabolismo
5.
mBio ; 12(4): e0156821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281397

RESUMO

The nitrogen-fixing microbe Azotobacter vinelandii has the ability to produce three genetically distinct, but mechanistically similar, components that catalyze nitrogen fixation. For two of these components, the Mo-dependent and V-dependent components, their corresponding metal-containing active site cofactors, designated FeMo-cofactor and FeV-cofactor, respectively, are preformed on separate molecular scaffolds designated NifEN and VnfEN, respectively. From prior studies, and the present work, it is now established that neither of these scaffolds can replace the other with respect to their in vivo cofactor assembly functions. Namely, a strain inactivated for NifEN cannot produce active Mo-dependent nitrogenase nor can a strain inactivated for VnfEN produce an active V-dependent nitrogenase. It is therefore proposed that metal specificities for FeMo-cofactor and FeV-cofactor formation are supplied by their respective assembly scaffolds. In the case of the third, Fe-only component, its associated active site cofactor, designated FeFe-cofactor, requires neither the NifEN nor VnfEN assembly scaffold for its formation. Furthermore, there are no other genes present in A. vinelandii that encode proteins having primary structure similarity to either NifEN or VnfEN. It is therefore concluded that FeFe-cofactor assembly is completed within its cognate catalytic protein partner without the aid of an intermediate assembly site. IMPORTANCE Biological nitrogen fixation is a complex process involving the nitrogenases. The biosynthesis of an active nitrogenase involves a large number of genes and the coordinated function of their products. Understanding the details of the assembly and activation of the different nitrogen fixation components, in particular the simplest one known so far, the Fe-only nitrogenase, would contribute to the goal of transferring the necessary genetic elements of bacterial nitrogen fixation to cereal crops to endow them with the capacity for self-fertilization. In this work, we show that there is no need for a scaffold complex for the assembly of the FeFe-cofactor, which provides the active site for Fe-only nitrogenase. These results are in agreement with previously reported genetic reconstruction experiments using a non-nitrogen-fixing microbe. In aggregate, these findings provide a high degree of confidence that the Fe-only system represents the simplest and, therefore, most attractive target for mobilizing nitrogen fixation into plants.


Assuntos
Azotobacter vinelandii/metabolismo , Domínio Catalítico , Coenzimas/metabolismo , Nitrogenase/química , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Coenzimas/genética , Molibdoferredoxina/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo
6.
J Am Chem Soc ; 143(24): 9183-9190, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110795

RESUMO

Mo-dependent nitrogenase is a major contributor to global biological N2 reduction, which sustains life on Earth. Its multi-metallic active-site FeMo-cofactor (Fe7MoS9C-homocitrate) contains a carbide (C4-) centered within a trigonal prismatic CFe6 core resembling the structural motif of the iron carbide, cementite. The role of the carbide in FeMo-cofactor binding and activation of substrates and inhibitors is unknown. To explore this role, the carbide has been in effect selectively enriched with 13C, which enables its detailed examination by ENDOR/ESEEM spectroscopies. 13C-carbide ENDOR of the S = 3/2 resting state (E0) is remarkable, with an extremely small isotropic hyperfine coupling constant, Ca = +0.86 MHz. Turnover under high CO partial pressure generates the S = 1/2 hi-CO state, with two CO molecules bound to FeMo-cofactor. This conversion surprisingly leaves the small magnitude of the 13C carbide isotropic hyperfine-coupling constant essentially unchanged, Ca = -1.30 MHz. This indicates that both the E0 and hi-CO states exhibit an exchange-coupling scheme with nearly cancelling contributions to Ca from three spin-up and three spin-down carbide-bound Fe ions. In contrast, the anisotropic hyperfine coupling constant undergoes a symmetry change upon conversion of E0 to hi-CO that may be associated with bonding and coordination changes at Fe ions. In combination with the negligible difference between CFe6 core structures of E0 and hi-CO, these results suggest that in CO-inhibited hi-CO the dominant role of the FeMo-cofactor carbide is to maintain the core structure, rather than to facilitate inhibitor binding through changes in Fe-carbide covalency or stretching/breaking of carbide-Fe bonds.


Assuntos
Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/enzimologia , Isótopos de Carbono , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Marcação por Isótopo , Conformação Molecular , Molibdoferredoxina/química , Nitrogenase/química , Nitrogenase/isolamento & purificação
7.
PLoS Genet ; 17(6): e1009617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111137

RESUMO

The energetic requirements for biological nitrogen fixation necessitate stringent regulation of this process in response to diverse environmental constraints. To ensure that the nitrogen fixation machinery is expressed only under appropriate physiological conditions, the dedicated NifL-NifA regulatory system, prevalent in Proteobacteria, plays a crucial role in integrating signals of the oxygen, carbon and nitrogen status to control transcription of nitrogen fixation (nif) genes. Greater understanding of the intricate molecular mechanisms driving transcriptional control of nif genes may provide a blueprint for engineering diazotrophs that associate with cereals. In this study, we investigated the properties of a single amino acid substitution in NifA, (NifA-E356K) which disrupts the hierarchy of nif regulation in response to carbon and nitrogen status in Azotobacter vinelandii. The NifA-E356K substitution enabled overexpression of nitrogenase in the presence of excess fixed nitrogen and release of ammonia outside the cell. However, both of these properties were conditional upon the nature of the carbon source. Our studies reveal that the uncoupling of nitrogen fixation from its assimilation is likely to result from feedback regulation of glutamine synthetase, allowing surplus fixed nitrogen to be excreted. Reciprocal substitutions in NifA from other Proteobacteria yielded similar properties to the A. vinelandii counterpart, suggesting that this variant protein may facilitate engineering of carbon source-dependent ammonia excretion amongst diverse members of this family.


Assuntos
Amônia/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Nitrogenase/genética , Fatores de Transcrição/genética , Substituição de Aminoácidos , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Glutamato-Amônia Ligase/metabolismo , Mutação , Fixação de Nitrogênio , Nitrogenase/metabolismo , Oxigênio/metabolismo , Solo/química , Microbiologia do Solo , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
PLoS Comput Biol ; 17(3): e1008719, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661889

RESUMO

The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue ß-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing ß-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing ß-188Ser) are important for communication between the two halves.


Assuntos
Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azotobacter vinelandii/enzimologia , Sítios de Ligação , Medição da Troca de Deutério , Transporte de Elétrons , Modelos Moleculares , Ligação Proteica
9.
J Biol Chem ; 296: 100492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662397

RESUMO

Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.


Assuntos
Ácido 3-Mercaptopropiônico/metabolismo , Azotobacter vinelandii/enzimologia , Dioxigenases/química , Dioxigenases/metabolismo , Ferro/química , Ferro/metabolismo , Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Cinética , Modelos Moleculares , Especificidade por Substrato
10.
FEBS Lett ; 595(5): 637-646, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482017

RESUMO

Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)+ -dependent oxidization of l-rhamnose to l-rhamnono-1,4-lactone. We herein investigated the crystal structures of RhaDH from Azotobacter vinelandii in ligand-free, NAD+ -bound, NADP+ -bound, and l-rhamnose- and NAD+ -bound forms at 1.9, 2.1, 2.4, and 1.6 Å resolution, respectively. The significant interactions with the 2'-phosphate group of NADP+ , but not the 2'-hydroxyl group of NAD+ , were consistent with a preference for NADP+ over NAD+ . The C5-OH and C6-methyl groups of l-rhamnose were recognized by specific residues of RhaDH through hydrogen bonds and hydrophobic contact, respectively, which contribute to the different substrate specificities from other aldose 1-dehydrogenases in the short-chain dehydrogenase/reductase superfamily.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Desidrogenases de Carboidrato/química , Coenzimas/química , NADP/química , Ramnose/química , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Metabolismo dos Carboidratos , Domínio Catalítico , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NADP/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnose/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Chembiochem ; 22(1): 151-155, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32918851

RESUMO

Nitrogenase converts N2 to NH3 , and CO to hydrocarbons, at its cofactor site. Herein, we report a biochemical and spectroscopic characterization of a Mo-nitrogenase variant expressed in an Azotobacter vinelandii strain containing a deletion of nifV, the gene encoding the homocitrate synthase. Designated NifDKCit , the catalytic component of this Mo-nitrogenase variant contains a citrate-substituted cofactor analogue. Activity analysis of NifDKCit reveals a shift of CO reduction from H2 evolution toward hydrocarbon formation and an opposite shift of N2 reduction from NH3 formation toward H2 evolution. Consistent with a shift in the Mo K-edge energy of NifDKCit relative to that of its wild-type counterpart, EPR analysis demonstrates a broadening of the line-shape and a decrease in the intensity of the cofactor-originated S=3/2 signal, suggesting a change in the spin properties of the cofactor upon citrate substitution. These observations point to a crucial role of homocitrate in substrate reduction by nitrogenase and the possibility to tune product profiles of nitrogenase reactions via organic ligand substitution.


Assuntos
Ácido Cítrico/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/enzimologia , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Ácido Cítrico/química , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Molibdênio/química , Nitrogenase/química , Nitrogenase/genética
12.
J Inorg Biochem ; 214: 111273, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086169

RESUMO

Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and V­nitrogenases but the Fe­nitrogenase components cannot support substrate reduction with its Mo­nitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Mo­nitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and V­nitrogenase but not the Fe­nitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and V­nitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Complexos Multiproteicos/química , Nitrogenase/química
13.
J Am Chem Soc ; 142(52): 21679-21690, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326225

RESUMO

Nitrogen fixation by nitrogenase begins with the accumulation of four reducing equivalents at the active-site FeMo-cofactor (FeMo-co), generating a state (denoted E4(4H)) with two [Fe-H-Fe] bridging hydrides. Recently, photolytic reductive elimination (re) of the E4(4H) hydrides showed that enzymatic re of E4(4H) hydride yields an H2-bound complex (E4(H2,2H)), in a process corresponding to a formal 2-electron reduction of the metal-ion core of FeMo-co. The resulting electron-density redistribution from Fe-H bonds to the metal ions themselves enables N2 to bind with concomitant H2 release, a process illuminated here by QM/MM molecular dynamics simulations. What is the nature of this redistribution? Although E4(H2,2H) has not been trapped, cryogenic photolysis of E4(4H) provides a means to address this question. Photolysis of E4(4H) causes hydride-re with release of H2, generating doubly reduced FeMo-co (denoted E4(2H)*), the extreme limit of the electron-density redistribution upon formation of E4(H2,2H). Here we examine the doubly reduced FeMo-co core of the E4(2H)* limiting-state by 1H, 57Fe, and 95Mo ENDOR to illuminate the partial electron-density redistribution upon E4(H2,2H) formation during catalysis, complementing these results with corresponding DFT computations. Inferences from the E4(2H)* ENDOR results as extended by DFT computations include (i) the Mo-site participates negligibly, and overall it is unlikely that Mo changes valency throughout the catalytic cycle; and (ii) two distinctive E4(4H) 57Fe signals are suggested as associated with structurally identified "anchors" of one bridging hydride, two others with identified anchors of the second, with NBO-analysis further identifying one anchor of each hydride as a major recipient of electrons released upon breaking Fe-H bonds.


Assuntos
Hidrogênio/química , Molibdoferredoxina/química , Nitrogenase/química , Animais , Azotobacter vinelandii/enzimologia , Domínio Catalítico , Transporte de Elétrons
14.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989088

RESUMO

Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polissacarídeos Bacterianos/biossíntese , Alginatos/química , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peso Molecular , Oxigênio/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Polissacarídeos Bacterianos/química
15.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989089

RESUMO

The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
J Am Chem Soc ; 142(33): 14324-14330, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787260

RESUMO

Coupling the nitrogenase MoFe protein to light-harvesting semiconductor nanomaterials replaces the natural electron transfer complex of Fe protein and ATP and provides low-potential photoexcited electrons for photocatalytic N2 reduction. A central question is how direct photochemical electron delivery from nanocrystals to MoFe protein is able to support the multielectron ammonia production reaction. In this study, low photon flux conditions were used to identify the initial reaction intermediates of CdS quantum dot (QD):MoFe protein nitrogenase complexes under photochemical activation using EPR. Illumination of CdS QD:MoFe protein complexes led to redox changes in the MoFe protein active site FeMo-co observed as the gradual decline in the E0 resting state intensity that was accompanied by an increase in the intensity of a new "geff = 4.5" EPR signal. The magnetic properties of the geff = 4.5 signal support assignment as a reduced S = 3/2 state, and reaction modeling was used to define it as a two-electron-reduced "E2" intermediate. Use of a MoFe protein variant, ß-188Cys, which poises the P cluster in the oxidized P+ state, demonstrated that the P cluster can function as a site of photoexcited electron delivery from CdS to MoFe protein. Overall, the results establish the initial steps for how photoexcited CdS delivers electrons into the MoFe protein during reduction of N2 to ammonia and the role of electron flux in the photochemical reaction cycle.


Assuntos
Compostos de Cádmio/metabolismo , Molibdoferredoxina/metabolismo , Pontos Quânticos/metabolismo , Sulfetos/metabolismo , Azotobacter vinelandii/enzimologia , Compostos de Cádmio/química , Transporte de Elétrons , Molibdoferredoxina/química , Oxirredução , Processos Fotoquímicos , Pontos Quânticos/química , Sulfetos/química
17.
Sci Rep ; 10(1): 12470, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719381

RESUMO

Bacterial alginate initially consists of 1-4-linked ß-D-mannuronic acid residues (M) which can be later epimerized to α-L-guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum. The three A. chroococcum genes, here designated AcalgE1, AcalgE2 and AcalgE3, were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions - 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.


Assuntos
Azotobacter vinelandii/enzimologia , Azotobacter/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Alginatos/química , Alginatos/metabolismo , Sequência de Aminoácidos , Azotobacter/química , Azotobacter/genética , Azotobacter vinelandii/química , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Genes Bacterianos , Família Multigênica , Alinhamento de Sequência , Especificidade por Substrato
18.
Angew Chem Int Ed Engl ; 59(38): 16511-16516, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32500662

RESUMO

We report an organic redox-polymer-based electroenzymatic nitrogen fixation system using a metal-free redox polymer, namely neutral-red-modified poly(glycidyl methacrylate-co-methylmethacrylate-co-poly(ethyleneglycol)methacrylate) with a low redox potential of -0.58 V vs. SCE. The stable and efficient electric wiring of nitrogenase within the redox polymer matrix enables mediated bioelectrocatalysis of N3- , NO2- and N2 to NH3 catalyzed by the MoFe protein via the polymer-bound redox moieties distributed in the polymer matrix in the absence of the Fe protein. Bulk bioelectrosynthetic experiments produced 209±30 nmol NH3 nmol MoFe-1 h-1 from N2 reduction. 15 N2 labeling experiments and NMR analysis were performed to confirm biosynthetic N2 reduction to NH3 .


Assuntos
Azotobacter vinelandii/enzimologia , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Polímeros/metabolismo , Cristalografia por Raios X , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Modelos Moleculares , Molibdoferredoxina/química , Fixação de Nitrogênio , Nitrogenase/química , Oxirredução , Polímeros/química
19.
Science ; 368(6497): 1381-1385, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554596

RESUMO

The enzyme nitrogenase uses a suite of complex metallocofactors to reduce dinitrogen (N2) to ammonia. Mechanistic details of this reaction remain sparse. We report a 1.83-angstrom crystal structure of the nitrogenase molybdenum-iron (MoFe) protein captured under physiological N2 turnover conditions. This structure reveals asymmetric displacements of the cofactor belt sulfurs (S2B or S3A and S5A) with distinct dinitrogen species in the two αß dimers of the protein. The sulfur-displaced sites are distinct in the ability of protein ligands to donate protons to the bound dinitrogen species, as well as the elongation of either the Mo-O5 (carboxyl) or Mo-O7 (hydroxyl) distance that switches the Mo-homocitrate ligation from bidentate to monodentate. These results highlight the dynamic nature of the cofactor during catalysis and provide evidence for participation of all belt-sulfur sites in this process.


Assuntos
Azotobacter vinelandii/enzimologia , Molibdoferredoxina/química , Nitrogênio/química , Biocatálise , Cristalografia por Raios X , Ligantes , Oxirredução , Multimerização Proteica , Enxofre/química
20.
Microb Cell Fact ; 19(1): 107, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429912

RESUMO

BACKGROUND: The obligate aerobe Azotobacter vinelandii is a model organism for the study of biological nitrogen fixation (BNF). This bacterium regulates the process of BNF through the two component NifL and NifA system, where NifA acts as an activator, while NifL acts as an anti-activator based on various metabolic signals within the cell. Disruption of the nifL component in the nifLA operon in a precise manner results in a deregulated phenotype that produces levels of ammonium that far surpass the requirements within the cell, and results in the release of up to 30 mM of ammonium into the growth medium. While many studies have probed the factors affecting growth of A. vinelandii, the features important to maximizing this high-ammonium-releasing phenotype have not been fully investigated. RESULTS: In this work, we report the effect of temperature, medium composition, and oxygen requirements on sustaining and maximizing elevated levels of ammonium production from a nitrogenase deregulated strain. We further investigated several pathways, including ammonium uptake through the transporter AmtB, which could limit yields through energy loss or futile recycling steps. Following optimization, we compared sugar consumption and ammonium production, to attain correlations and energy requirements to drive this process in vivo. Ammonium yields indicate that between 5 and 8% of cellular protein is fully active nitrogenase MoFe protein (NifDK) under these conditions. CONCLUSIONS: These findings provide important process optimization parameters, and illustrate that further improvements to this phenotype can be accomplished by eliminating futile cycles.


Assuntos
Compostos de Amônio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio/genética , Compostos de Amônio/análise , Azotobacter vinelandii/enzimologia , Meios de Cultura/química , Genes Bacterianos , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Oxigênio/metabolismo , Temperatura , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA