Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Water Health ; 22(5): 923-938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822470

RESUMO

The World Health Organization classifies leptospirosis as a significant public health concern, predominantly affecting impoverished and unsanitary regions. By using the Pensacola Bay System as a case study, this study examines the underappreciated susceptibility of developed subtropical coastal ecosystems such as the Pensacola Bay System to neglected zoonotic pathogens such as Leptospira. We analyzed 132 water samples collected over 12 months from 44 distinct locations with high levels of Escherichia coli (>410 most probable number/100 mL). Fecal indicator bacteria (FIB) concentrations were assessed using IDEXX Colilert-18 and Enterolert-18, and an analysis of water physiochemical characteristics and rainfall intensity was conducted. The LipL32 gene was used as a quantitative polymerase chain reaction (qPCR) indicator to identify the distribution of Leptospira interrogans. The results revealed 12 instances of the presence of L. interrogans at sites with high FIB over various land cover and aquatic ecosystem types. Independent of specific rainfall events, a seasonal relationship between precipitation and elevated rates of fecal bacteria and leptospirosis was found. These findings highlight qPCR's utility in identifying pathogens in aquatic environments and the widespread conditions where it can be found in natural and developed areas.


Assuntos
Microbiologia da Água , Leptospirose/microbiologia , Leptospirose/epidemiologia , Leptospira/isolamento & purificação , Leptospira/genética , Fezes/microbiologia , Leptospira interrogans/isolamento & purificação , Leptospira interrogans/genética , Monitoramento Ambiental/métodos , Chuva , Estações do Ano , Baías/microbiologia , Análise Espaço-Temporal
2.
Sci Total Environ ; 943: 173773, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844237

RESUMO

Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.


Assuntos
Baías , Biofilmes , Microbiota , Plásticos , Regiões Antárticas , Baías/microbiologia , RNA Ribossômico 16S , Bactérias/classificação , Incrustação Biológica
3.
Harmful Algae ; 136: 102656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876531

RESUMO

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Assuntos
Baías , Proliferação Nociva de Algas , Fitoplâncton , Planktothrix , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Baías/microbiologia , Microcistinas/metabolismo , Microcistinas/análise , Monitoramento Ambiental , Estações do Ano , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Cianobactérias/genética
4.
Environ Res ; 257: 119272, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823613

RESUMO

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.


Assuntos
Bactérias , Baías , Baías/microbiologia , Bactérias/genética , Microbiota/efeitos dos fármacos , Biodiversidade , Qualidade da Água , Estuários
5.
BMC Microbiol ; 24(1): 162, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730339

RESUMO

BACKGROUND: Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS: The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION: Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.


Assuntos
Bactérias , Baías , Microbiota , Filogenia , RNA Ribossômico 16S , Água do Mar , Aprendizado de Máquina Supervisionado , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota/genética , Água do Mar/microbiologia , Índia , Baías/microbiologia , Biodiversidade , DNA Bacteriano/genética , Salinidade , Análise de Sequência de DNA/métodos
6.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809043

RESUMO

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Assuntos
Antibacterianos , Baías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Baías/microbiologia , Antibacterianos/farmacologia , Estudos Longitudinais , Maryland , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Vibrioses/microbiologia , Humanos
7.
Microbiol Spectr ; 12(5): e0404823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606959

RESUMO

Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as Karlodinium, Heterosigma akashiwo, Protoperidinium sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems. IMPORTANCE: Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.


Assuntos
Baías , Estuários , Eucariotos , Fitoplâncton , Baías/microbiologia , Eucariotos/classificação , Eucariotos/genética , Fitoplâncton/classificação , Fitoplâncton/genética , Plâncton/classificação , Plâncton/genética , Ecossistema , Biodiversidade , Estações do Ano
8.
Mar Environ Res ; 198: 106525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657370

RESUMO

Microplastics have become a widespread concern within marine environments and are particularly evident in aquaculture regions that are characterized by plastic accumulation. This study employed 16 S rDNA sequencing to investigate the dynamic succession of microbial communities colonizing polyvinyl chloride (PVC), polystyrene (PS), and polyamide (PA) microplastics in seawater, when subjected to varying exposure durations in the Liusha Bay aquaculture region. Results revealed that the composition of microplastics microbial communities varied remarkably across geographical locations and exposure times. With an increase in exposure duration, both the diversity and richness of bacterial communities colonizing microplastics significantly increased, microbial communities show adaptations to the plastisphere. The type of microplastics had a significant effect on the community structure characteristicsof bacteria attached to their surfaces, with inconsistent trends in the relative abundance of different genera on different substrates. Notably, microplastic surfaces harbored a significant abundance of hydrocarbon-degrading bacteria, exemplified by Erythrobacter. These findings underscore the potential of microplastics as unique microbial niches. Meanwhile, long-term exposure experiments also offer the possibility of screening for plastic-degrading bacteria. In addition, the presence of the pathogenic bacterium Vibrio was detected in all microplastic samples, implying that microplastics could serve as carriers for pathogenic dissemination. This underscores the urgency of addressing the risk posed by the proliferation of harmful bacteria on microplastic surfaces. Overall, this study enhances our understanding of microbial community dynamics on microplastics under diverse conditions. It contributes to the broader comprehension of plastisphere microbial ecosystems in the marine environment, thereby addressing critical environmental implications.


Assuntos
Bactérias , Microplásticos , Água do Mar , Poluentes Químicos da Água , China , Microplásticos/toxicidade , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Água do Mar/microbiologia , Água do Mar/química , Baías/microbiologia , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Polímeros , RNA Ribossômico 16S/genética , Plásticos/análise
9.
Biodegradation ; 35(5): 601-620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625437

RESUMO

Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and 3.08 × 0.70 µm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4- (250 to 10000 mg/L), reduction of KClO4- from 10 to 25%. LB broth with NaCl (3.5-30% w/v) and KClO4- (250-10000 mg/L) were used in independent trials to evaluate susceptibility to salinity and perchlorate, respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO4- reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4-. BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4-, respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 - 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.


Assuntos
Bacillus , Sedimentos Geológicos , Percloratos , Filogenia , Bacillus/metabolismo , Bacillus/isolamento & purificação , Colômbia , Sedimentos Geológicos/microbiologia , Percloratos/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Baías/microbiologia , Extremófilos , Antibacterianos/farmacologia , Salinidade , Oxirredução , Concentração de Íons de Hidrogênio
10.
Environ Res ; 251(Pt 2): 118698, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518906

RESUMO

Sixty-eight morphologically distinct isolates of marine actinomycetes were derived from seashore, mangrove, and saltpan ecosystems located between the Palk Strait and Gulf of Mannar region, Bay of Bengal, Tamilnadu. Twenty-five (36.8%) isolates exhibited anti-mycotic activity against Candida albicans and Cryptococcus neoformans in preliminary screening, and 4 isolates with prominent activity were identified and designated at the genus level as Streptomyces sp. VPTS3-I, Streptomyces sp. VPTS3-2, Streptomyces sp. VPTSA1-4 and Streptomyces sp. VPTSA1-8. All the potential antagonistic isolates were further characterized with phenotypic and genotypic properties including 16S rRNA gene sequencing and identified species level as Streptomyces afghaniensis VPTS3-1, S. matensis VPTS3-2, S. tuirus VPTSA1-4 and S. griseus VPTSA1-8. In addition, the active fractions from the potential antagonistic streptomycetes were extracted with organic solvents by shake flask culture method and the anti-mycotic efficacies were evaluated. The optimization parameters for the production of the anti-mycotic compound were found to be pH between 7 and 8, the temperature at 30ᵒC, the salinity of 2%, incubation of 9 days, and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch casein medium.


Assuntos
Antifúngicos , Streptomyces , Índia , Streptomyces/genética , Streptomyces/metabolismo , Antifúngicos/farmacologia , Microbiologia do Solo , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Baías/microbiologia , RNA Ribossômico 16S/genética
11.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38521983

RESUMO

The shelled pteropod Creseis acicula is a marine pelagic shellfish widely distributed from temperate to tropical seas around the world. From June to July 2020, a C. acicula bloom first happened in the Daya Bay, southern China, and its density reached the highest value (5600 ind. m-3) ever recorded around the world. However, few studies have investigated the responses of bacterial communities to the C. acicula bloom. In the present study, we examined the community profiles of three communities of bacteria including the free-living and particle-attached bacteria in the blooming and reference waters, and bacteria attached to the whole body and shell of C. acicula using a high-throughput sequencing method. The results indicated that the C. acicula bloom had a greater impact on particle-attached bacteria than free-living bacteria. Among the bloom-sensitive particle-attached bacteria, the predominant bacterial phyla were Pseudomonadota, Bacteroidota and Verrucomicrobiota in the blooming areas, whereas they were Actinomycetota and Planctomycetota in the reference areas. Specifically, fecal bacteria Haloferula and Halioglobus spp. were significantly enriched in the blooming waters and accumulated on C. acicula shells. Conversely, the significantly lower relative abundance of Nocardioides sp. in the blooming area and accumulated on the whole body of C. acicula indicated their attachment to particles consumed by C. acicula. Overall, our results suggested that the C. acicula bloom influenced marine bacteria, particularly particle-attached bacteria, by increasing (e.g. providing shells and feces) or decreasing (e.g. filter-feeding the suspended particles) the abundance of available substances.


Assuntos
Bactérias , Baías , China , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Animais , Baías/microbiologia , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Água do Mar/microbiologia , Eutrofização
12.
Mar Pollut Bull ; 196: 115580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801799

RESUMO

The bacterial community plays an important role in biogeochemical cycles in marine sediment. However, little is known about the vertical profiles and co-occurrence patterns of bacterial community in sediment cores from the marine environment. In this study, five sediment cores were taken from a subtropical bay in China, heavily impacted by anthropogenic activities. The bacterial composition in sediment cores was investigated by using high-throughput sequencing of the 16S rRNA gene. A principal coordinates analysis and an adonis analysis of the operational taxonomic unit (OTU) compositions showed that spatial variation, rather than vertical variation, determined the bacterial structure in sediment cores. The bacterial complexity varied greatly across the five sediment cores, and the rare taxa played an important role in supporting the stability of the bacterial network. This study revealed that sediment properties and anthropogenic activities may induce a shift in the bacterial composition in sediment cores of a subtropical bay.


Assuntos
Bactérias , Baías , Baías/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sedimentos Geológicos/química , China
13.
Sci Data ; 9(1): 605, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207335

RESUMO

Jiaozhou Bay is a typical semi-enclosed bay with a temperate climate imposed by strong anthropogenic influence. To investigate microbial biodiversity and ecosystem services in this highly dynamic coastal environment, we conducted a monthly microbial survey spanning eight months at two stations in the bay and the open Yellow Sea starting in April 2015. This report provides a comprehensive inventory of amplicon sequences and environmental microbial genomes from this survey. In total, 2,543 amplicon sequence variants were obtained with monthly relative abundance profiles in three size fractions (>2.7 µm, 2.7-0.7 µm, and 0.7-0.22 µm). Shotgun metagenomes yielded 915 high-quality metagenome-assembled genomes with ≥50% completeness and ≤5% contamination. These environmental genomes comprise 27 bacterial and 5 archaeal phyla. We expect this comprehensive dataset will facilitate a better understanding of coastal microbial ecology.


Assuntos
Baías , Microbiota , Baías/microbiologia , China , Genoma Microbiano , Metagenoma , Oceanos e Mares
14.
Appl Environ Microbiol ; 88(14): e0035622, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862751

RESUMO

Vibrio spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum, Dinophysis acuminata, Heterosigma akashiwo, and Chattonella subsalsa. Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO4-, total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO4-, TDP, NO3:NO2, NO2-, and NH4+) was the best at detecting total (tlh+) V. parahaemolyticus, suggesting that they are the prime drivers for the growth and distribution of pathogenic Vibrio spp. IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391-S395, 2012, https://doi.org/10.1093/cid/cis243). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j.foodres.2010.04.001; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817-825, 2013, https://doi.org/10.1007/s00248-012-0163-2; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, https://doi.org/10.1093/femsec/fiv121). Temperature and salinity are the two major factors affecting the distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, https://doi.org/10.3389/fmicb.2014.00256). However, Vibrio sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384-396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27-33, 2010, https://doi.org/10.1111/j.1758-2229.2009.00128.x; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, https://doi.org/10.1002/mbo3.600). The expansion of Vibrio spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic Vibrio spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays.


Assuntos
Dinoflagellida , Estramenópilas , Vibrioses , Vibrio parahaemolyticus , Baías/microbiologia , Biodiversidade , Proteínas de Ligação a DNA , Delaware , Dinoflagellida/genética , Dinoflagellida/microbiologia , Proliferação Nociva de Algas , Humanos , Nitratos , Nitrogênio , Dióxido de Nitrogênio , Fosfatos , Fitoplâncton , Temperatura , Vibrio parahaemolyticus/genética
15.
Sci Rep ; 12(1): 2980, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194107

RESUMO

Nutrient dynamics function globally, flowing from rivers to the ocean (estuarine-coastal zone), and are vulnerable to climate change. Microbial habitats can be affected by marine nutrient dynamics and may provide a clue to predict microbial responses to environmental heterogeneity in estuarine-coastal zones. We surveyed surface seawater in Gwangyang Bay, a semi-enclosed estuary in Korea, from 2016 to 2018 using a metabarcoding approach with prokaryotic 16S and eukaryotic 18S rRNA genes. Bacterial and microeukaryotic communities in these waters showed distinct local communities in response to environmental heterogeneity and community transition at spatiotemporal scales in the estuarine-coastal zone. The relative abundance of prokaryotic and eukaryotic operational taxonomic units suggested a microbial trophic interaction in the Gwangyang Bay waters. We found that the community assembly process in prokaryotic communities was primarily influenced by biological interaction (immigration-emigration), whereas that in eukaryotic communities was more affected by environmental stress (habitat specificity) rather than by biotic factors. Our findings in the Gwangyang Bay waters may provide information on underlying (biotic or abiotic) factors of the assembly process in microbial communities in the estuarine-coastal zone.


Assuntos
Baías/microbiologia , Biodiversidade , Eucariotos , Filogenia , Plâncton , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Eucariotos/classificação , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , República da Coreia
16.
Microb Ecol ; 84(3): 746-758, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34665286

RESUMO

Diatom blooms can significantly affect the succession of microbial communities, yet little is known about the assembly processes and interactions of microbial communities during autumn bloom events. In this study, we investigated the ecological effects of an autumn diatom bloom on prokaryotic communities (PCCs) and microeukaryotic communities (MECs), focusing on their assembly processes and interactions. The PCCs were largely dominated by Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, and Flavobacteria, while the MECs primarily included Diatomea, Dinoflagellata, and Chlorophyta. The succession of both PCCs and MECs was mainly driven by this diatom bloom and environmental factors, such as nitrate and silicate. Null modeling revealed that homogeneous selection had a more pronounced impact on the structure of PCCs compared with that of MECs. In particular, drift and dispersal limitation cannot be neglected in the assembly processes of MECs. Co-occurrence network analyses showed that Litorimicrobium, Cercozoa, Marine Group I (MGI), Cryptomonadales, Myrionecta, and Micromonas may affect the bloom process. In summary, these results elucidated the complex, robust interactions and obviously distinct assembly mechanisms of PCCs and MECs during a diatom bloom and extend our current comprehension of the ecological mechanisms and microbial interactions involved in an autumn diatom bloom process.


Assuntos
Alphaproteobacteria , Diatomáceas , Dinoflagellida , Gammaproteobacteria , Baías/microbiologia
17.
PLoS One ; 16(10): e0257862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637433

RESUMO

The taxonomic compositions of marine prokaryotic communities are known to follow seasonal cycles, but functional metagenomic insights into this seasonality is still limited. We analyzed a total of 22 metagenomes collected at 11 time points over a 14-month period from two sites in Sendai Bay, Japan to obtain seasonal snapshots of predicted functional profiles of the non-cyanobacterial prokaryotic community. Along with taxonomic composition, functional gene composition varied seasonally and was related to chlorophyll a concentration, water temperature, and salinity. Spring phytoplankton bloom stimulated increased abundances of putative genes that encode enzymes in amino acid metabolism pathways. Several groups of functional genes, including those related to signal transduction and cellular communication, increased in abundance during the mid- to post-bloom period, which seemed to be associated with a particle-attached lifestyle. Alternatively, genes in carbon metabolism pathways were generally more abundant in the low chlorophyll a period than the bloom period. These results indicate that changes in trophic condition associated with seasonal phytoplankton succession altered the community function of prokaryotes. Our findings on seasonal changes of predicted function provide fundamental information for future research on the mechanisms that shape marine microbial communities.


Assuntos
Cianobactérias/genética , Metagenoma , Metagenômica/métodos , Microbiota/genética , Fitoplâncton/genética , Estações do Ano , Água do Mar/microbiologia , Baías/microbiologia , Clorofila A/metabolismo , Japão , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/química , Temperatura
18.
Microbes Environ ; 36(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34645731

RESUMO

Zostera marina (eelgrass) is a widespread seagrass species that forms diverse and productive habitats along coast lines throughout much of the northern hemisphere. The present study investigated the microbial consortia of Z. marina growing at Futtsu clam-digging beach, Chiba prefecture, Japan. The following environmental samples were collected: sediment, seawater, plant leaves, and the root-rhizome. Sediment and seawater samples were obtained from three sampling points: inside, outside, and at the marginal point of the eelgrass bed. The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Microbial communities on the dead (withered) leaf surface markedly differed from those in sediment, but were similar to those in seawater. Eelgrass leaves and surrounding seawater were dominated by the bacterial taxa Rhodobacterales (Alphaproteobacteria), whereas Rhodobacterales were a minor group in eelgrass sediment. Additionally, we speculated that the order Sphingomonadales (Alphaproteobacteria) acts as a major degrader during the decomposition process and constantly degrades eelgrass leaves, which then spread into the surrounding seawater. Withered eelgrass leaves did not accumulate on the surface sediment because they were transported out of the eelgrass bed by wind and residual currents unique to the central part of Tokyo Bay.


Assuntos
Microbiota , Zosteraceae , Baías/microbiologia , Japão , Tóquio , Microbiologia da Água , Zosteraceae/microbiologia
19.
Biomolecules ; 11(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34439804

RESUMO

The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cianobactérias/química , Microalgas/química , Fitoplâncton/química , Animais , Antibacterianos/química , Antineoplásicos/química , Oceano Atlântico , Países Bálticos , Baías/microbiologia , Produtos Biológicos/química , Linhagem Celular Tumoral , Misturas Complexas/química , Misturas Complexas/farmacologia , Cianobactérias/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Eutrofização , Água Doce/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Microalgas/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fitoplâncton/metabolismo , Águas Salinas/química , Serina Proteases/metabolismo
20.
Sci Rep ; 11(1): 17277, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446773

RESUMO

Five years of datasets from 2015 to 2019 of whole genome shotgun sequencing for cells trapped on 0.2-µm filters of seawater collected monthly from Ofunato Bay, an enclosed bay in Japan, were analysed, which included the 2015 data that we had reported previously. Nucleotide sequences were determined for extracted DNA from three locations for both the upper (1 m) and deeper (8 or 10 m) depths. The biotic communities analysed at the domain level comprised bacteria, eukaryotes, archaea and viruses. The relative abundance of bacteria was over 60% in most months for the five years. The relative abundance of the SAR86 cluster was highest in the bacterial group, followed by Candidatus Pelagibacter and Planktomarina. The relative abundance of Ca. Pelagibacter showed no relationship with environmental factors, and those of SAR86 and Planktomarina showed positive correlations with salinity and dissolved oxygen, respectively. The bacterial community diversity showed seasonal changes, with high diversity around September and low diversity around January for all five years. Nonmetric multidimensional scaling analysis also revealed that the bacterial communities in the bay were grouped in a season-dependent manner and linked with environmental variables such as seawater temperature, salinity and dissolved oxygen.


Assuntos
Baías/microbiologia , Metagenômica/métodos , Microbiota/genética , Estações do Ano , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Cianobactérias/classificação , Cianobactérias/genética , Ecossistema , Geografia , Japão , Oxigênio/metabolismo , Dinâmica Populacional , Salinidade , Água do Mar/química , Temperatura , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA