Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
PLoS One ; 19(7): e0306181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959227

RESUMO

Babesia is a tick-transmitted parasite that infects wild and domestic animals, causes babesiosis in humans, and is an increasing public health concern. Here, we investigated the prevalence and molecular characteristics of Babesia infections in the rodents in Southeastern Shanxi, China. Small rodents were captured, and the liver and spleen tissues were used for Babesia detection using traditional PCR and sequencing of the partial 18S rRNA gene. The analysis revealed that 27 of 252 small rodents were positive for Babesia, with an infection rate of 10.71%. The infection rates in different sexes and rodent tissues were not statistically different, but those in different rodent species, habitats, and sampling sites were statistically different. The highest risk of Babesia infection was observed in Niviventer confucianus captured from the forests in Huguan County. Forty-three sequences from 27 small rodents positive for Babesia infection were identified as Babesia microti, including 42 sequences from 26 N. confucianus, and one sequence from Apodemus agrarius. Phylogenetic analysis showed that all sequences were clustered together and had the closest genetic relationship with Babesia microti strains isolated from Rattus losea and N. confucianus in China, and belonged to the Kobe-type, which is pathogenic to humans. Compared to other Kobe-type strains based on the nearly complete 18S rRNA gene, the sequences obtained in this study showed the difference by 1-3 bp. Overall, a high prevalence of Babesia microti infection was observed in small rodents in Southeastern Shanxi, China, which could benefit us to take the implementation of relevant prevention and control measures in this area.


Assuntos
Babesia microti , Babesiose , Filogenia , RNA Ribossômico 18S , Roedores , Animais , Babesia microti/genética , Babesia microti/isolamento & purificação , China/epidemiologia , Babesiose/epidemiologia , Babesiose/parasitologia , Prevalência , Roedores/parasitologia , RNA Ribossômico 18S/genética , Feminino , Masculino , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia
2.
Vector Borne Zoonotic Dis ; 24(5): 285-292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38346321

RESUMO

Background: Despite abundance of small mammals in Serbia, there is no information on their role in the epidemiology of tick-borne diseases (TBDs). This retrospective study aimed to identify different tick-borne pathogens (TBPs) in small mammals in Serbia collected during 2011. Materials and Methods: A total of 179 small mammals were collected from seven different localities in Serbia. The five localities belong to the capital city of Serbia-Belgrade: recreational areas-Ada Ciganlija, Titov gaj, and Kosutnjak as well as mountainous suburban areas used for hiking-Avala and Kosmaj. The locality Veliko Gradiste is a tourist place in northeastern Serbia, whereas the locality Milosev Do is a remote area in western Serbia with minor human impact on the environment. Results: The results of the presented retrospective study are the first findings of Rickettsia helvetica, Rickettsia monacensis, Neoehrlichia mikurensis, Borrelia afzelii, Borrelia miyamotoi, Babesia microti, Hepatozoon canis, and Coxiella burnetii in small mammals in Serbia. The presence of R. helvetica was confirmed in two Apodemus flavicollis, the presence of one of the following pathogens, R. monacensis, B. afzelii, H. canis, Ba. microti, and N. mikurensis was confirmed in one A. flavicollis each, whereas the presence of B. miyamotoi was confirmed in one Apodemus agrarius. Coinfection with B. afzelii and Ba. microti was confirmed in one A. flavicollis. DNA of C. burnetii was detected in 3 of 18 pools. Conclusions: The results confirm that detected pathogens circulate in the sylvatic cycle in Serbia and point to small mammals as potential reservoir hosts for the detected TBPs. Further large-scale studies on contemporary samples are needed to clarify the exact role of particular small mammal species in the epidemiology of TBDs caused by the detected pathogens.


Assuntos
Doenças Transmitidas por Carrapatos , Animais , Sérvia/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Estudos Retrospectivos , Carrapatos/microbiologia , Mamíferos/parasitologia , Roedores/parasitologia , Babesia microti/isolamento & purificação , Babesia microti/genética , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genética , Borrelia/isolamento & purificação , Borrelia/genética , Borrelia/classificação
3.
J Infect Dis ; 225(2): 238-242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34664651

RESUMO

Human babesiosis caused by Babesia microti can be fatal in immunocompromised patients, and the currently used drugs are often ineffective. A recent study found that clofazimine clears B. microti Munich strain in immunocompromised mice. In the present study, we investigated the efficacies of clofazimine and 2-drug combinations involving clofazimine, atovaquone, and azithromycin against B. microti Peabody mjr strain in immunocompromised mice. Treatment with clofazimine alone, clofazimine plus azithromycin, and atovaquone plus azithromycin was ineffective and failed to eliminate the parasites completely, while a 44-day treatment with clofazimine plus atovaquone was highly effective and resulted in a radical cure.


Assuntos
Antibacterianos/uso terapêutico , Antiprotozoários/uso terapêutico , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Babesia microti/efeitos dos fármacos , Babesiose/tratamento farmacológico , Clofazimina/uso terapêutico , Animais , Babesia microti/genética , Babesia microti/isolamento & purificação , Babesiose/imunologia , Quimioterapia Combinada , Humanos , Hospedeiro Imunocomprometido , Camundongos
5.
mSphere ; 6(5): e0068221, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585963

RESUMO

Tick-borne diseases have expanded over the last 2 decades as a result of shifts in tick and pathogen distributions. These shifts have significantly increased the need for accurate portrayal of real-time pathogen distributions and prevalence in hopes of stemming increases in human morbidity. Traditionally, pathogen distribution and prevalence have been monitored through case reports or scientific collections of ticks or reservoir hosts, both of which have challenges that impact the extent, availability, and accuracy of these data. Citizen science tick collections and testing campaigns supplement these data and provide timely estimates of pathogen prevalence and distributions to help characterize and understand tick-borne disease threats to communities. We utilized our national citizen science tick collection and testing program to describe the distribution and prevalence of four Ixodes-borne pathogens, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti, across the continental United States. IMPORTANCE In the 21st century, zoonotic pathogens continue to emerge, while previously discovered pathogens continue to have changes within their distribution and prevalence. Monitoring these pathogens is resource intensive, requiring both field and laboratory support; thus, data sets are often limited within their spatial and temporal extents. Citizen science collections provide a method to harness the general public to collect samples, enabling real-time monitoring of pathogen distribution and prevalence.


Assuntos
Anaplasma phagocytophilum/fisiologia , Babesia microti/fisiologia , Borrelia/fisiologia , Ixodes/fisiologia , Anaplasma phagocytophilum/isolamento & purificação , Distribuição Animal , Animais , Babesia microti/isolamento & purificação , Borrelia/isolamento & purificação , Ciência do Cidadão , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Ixodes/parasitologia , Doenças Transmitidas por Carrapatos/transmissão , Estados Unidos
6.
Transfusion ; 61(10): 2969-2980, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34368968

RESUMO

BACKGROUND: Human babesiosis is a zoonotic infection caused by an intraerythrocytic parasite. The highest incidence of babesiosis is in the United States, although cases have been reported in other parts of the world. Due to concerns of transfusion-transmitted babesiosis, the US Food and Drug Administration (FDA) recommended year-round regional testing for Babesia by nucleic acid testing or use of an FDA-approved device for pathogen reduction. A new molecular test, cobas Babesia (Roche Molecular Systems, Inc.), was evaluated for the detection of the four species that cause human disease, Babesia microti, Babesia duncani, Babesia divergens, and Babesia venatorum. STUDY DESIGN AND METHODS: Analytical performance was evaluated followed by clinical studies on whole blood samples from US blood donations collected in a special tube containing a chaotropic reagent that lyses the red cells and preserves nucleic acid. Sensitivity and specificity of the test in individual samples (individual donation testing [IDT]) and in pools of six donations were determined. RESULTS: Based on analytical studies, the claimed limit of detection of cobas Babesia for B. microti is 6.1 infected red blood cells (iRBC)/mL (95% confidence interval [CI]: 5.0, 7.9); B. duncani was 50.2 iRBC/mL (95% CI: 44.2, 58.8); B. divergens was 26.1 (95% CI: 22.3, 31.8); and B. venatorum was 40.0 iRBC/mL (95% CI: 34.1, 48.7). The clinical specificity for IDT was 99.999% (95% CI: 99.996, 100) and 100% (95% CI: 99.987, 100) for pools of six donations. CONCLUSION: cobas Babesia enables donor screening for Babesia species with high sensitivity and specificity.


Assuntos
Babesia/isolamento & purificação , Babesiose/sangue , Doadores de Sangue , DNA de Protozoário/sangue , RNA de Protozoário/sangue , Babesia/genética , Babesia microti/genética , Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Babesiose/microbiologia , DNA de Protozoário/genética , Testes Diagnósticos de Rotina , Seleção do Doador , Humanos , RNA de Protozoário/genética , Sensibilidade e Especificidade , Estados Unidos
8.
Transfusion ; 61(10): 2958-2968, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272882

RESUMO

BACKGROUND: Babesia microti has gained a foothold in Canada as tick vectors become established in broader geographic areas. B. microti infection is associated with mild or no symptoms in healthy individuals but is transfusion-transmissible and can be fatal in immunocompromised individuals. This is the first estimate of clinically significant transfusion-transmitted babesiosis (TTB) risk in Canada. STUDY DESIGN AND METHODS: The proportion of B. microti-antibody (AB)/nucleic acid amplification test (NAT)-positive whole blood donations was estimated at 5.5% of the proportion of the general population with reported Lyme Disease (also tick-borne) based on US data. Monte Carlo simulation estimated the number and proportion of infectious red cell units for three scenarios: base, localized incidence (risk in Manitoba only), and donor study informed (prevalence from donor data). The model simulated 1,029,800 donations repeated 100,000 times for each. RESULTS: In the base scenario 0.5 (0.01, 1.75), B. microti-NAT-positive donations would be expected per year, with 0.08 (0, 0.38) recipients suffering clinically significant TTB (1 every 12.5 years). In the localized incidence scenario, there were 0.21(0, 0.7) B. microti-NAT-positive donations, with 0.04 (0, 0.14) recipient infections (about 1 every 25 years). In the donor study informed scenario, there were 4.6 (0.3, 15.8) B. microti-NAT-positive donations expected, and 0.81 (0.05, 3.14) clinically significant TTB cases per year. DISCUSSION: The likelihood of clinically relevant TTB is low. Testing would have very little utility in Canada at this time. Ongoing pathogen surveillance in tick vectors is important as B. microti prevalence appears to be slowly increasing in Canada.


Assuntos
Babesia microti/isolamento & purificação , Babesiose/etiologia , Reação Transfusional/etiologia , Babesiose/parasitologia , Babesiose/transmissão , Doadores de Sangue , Transfusão de Sangue , Canadá/epidemiologia , Humanos , Método de Monte Carlo , Fatores de Risco , Reação Transfusional/parasitologia
9.
Diagn Microbiol Infect Dis ; 101(1): 115429, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34133997

RESUMO

Although many infections may potentially cause a false positive Borrelia burgdorferi antibody test, particularly for IgM antibody, babesiosis is not regarded as an infection that does this. A patient with untreated babesiosis is described here who developed transient IgM seropositivity for antibodies to B. burgdorferi. Thus, the diagnosis of Lyme disease coinfection in patients with active babesiosis, as in patients with human granulocytic anaplasmosis, is more convincingly accomplished if an objective clinical manifestation of Lyme disease is present, such as an erythema migrans skin lesion.


Assuntos
Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Borrelia burgdorferi/isolamento & purificação , Coinfecção/diagnóstico , Doença de Lyme/diagnóstico , Anticorpos Antibacterianos/sangue , Babesia microti/genética , Borrelia burgdorferi/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Reações Falso-Positivas , Feminino , Humanos , Imunoglobulina M/sangue , Pessoa de Meia-Idade , Testes Sorológicos , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia
11.
Parasit Vectors ; 14(1): 260, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001256

RESUMO

BACKGROUND: The universal nature of the human-companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. METHODS: We tested tick samples submitted through passive surveillance (2011-2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. RESULTS: During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97-18.09%) than from companion animals (9.9%, 95% CI 9.15-10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12-22.65%) than engorged ticks (10.0%, 95% CI 9.45-10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. CONCLUSIONS: While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations.


Assuntos
Ixodes/microbiologia , Ixodes/parasitologia , Animais de Estimação/microbiologia , Animais de Estimação/parasitologia , Anaplasma phagocytophilum/isolamento & purificação , Anaplasma phagocytophilum/patogenicidade , Animais , Babesia microti/isolamento & purificação , Babesia microti/patogenicidade , Borrelia/isolamento & purificação , Borrelia/patogenicidade , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/patogenicidade , Coinfecção/microbiologia , Coinfecção/parasitologia , Feminino , Humanos , Masculino , Ontário , Análise Espaço-Temporal
12.
Parasitol Int ; 83: 102351, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33872796

RESUMO

Babesia microti is one of the most important pathogens causing humans and rodents babesiosis-an emerging tick-borne disease that occurs worldwide. At present, the gold standard for the detection of Babesia is the microscopic examination of blood smears, but this diagnostic test has several limitations. The recombinase polymerase amplification with lateral flow (LF-RPA) assay targeting the mitochondrial cytochrome oxidase subunit I (cox I) gene of B. microti was developed in this study. The LF-RPA can be performed within 10-30 min, at a wide range of temperatures between 25 and 45 °C, which is much faster and easier to perform than conventional PCR. The results showed that the LF-RAP can detect 0.25 parasites/µl blood, which is 40 times more sensitive than the conventional PCR based on the V4 variable region of 18S rRNA. Specificity assay showed no cross-reactions with DNAs of related apicomplexan parasites and their host. The applicability of the LF-RPA method was further evaluated using two clinical human samples and six experimental mice samples, with seven samples were positively detected, while only three of them were defined as positive by conventional PCR. These results present the developed LF-RPA as a new simple, specific, sensitive, rapid and convenient method for diagnosing infection with B. microti. This novel assay was the potential to be used in field applications and large-scale sample screening.


Assuntos
Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Babesia microti/enzimologia , Babesiose/parasitologia , DNA de Protozoário/análise , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/parasitologia , Proteínas de Protozoários/análise , Recombinases/análise
13.
BMJ Case Rep ; 14(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863772

RESUMO

A 70-year-old man presented to the emergency department with fevers, ankle edema and nausea following a presumed insect bite on his ankle 1 month prior. On examination, he was febrile and had left leg pain with passive range of motion. Laboratory studies revealed anemia, thrombocytopenia, acute kidney injury and elevated aminotransaminases. Due to his recent travel to the Northeastern United States, he was suspected of having a possible tick-borne illness. Serologies were positive for Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti, and the patient was diagnosed with Lyme disease, babesiosis and anaplasmosis. He was treated with doxycyline, atovaquone and azithromycin, leading to resolution of symptoms. While co-infection with Lyme disease is common, infection with three tickborne illnesses at one time is relatively rare.


Assuntos
Babesiose , Ehrlichiose , Doença de Lyme , Idoso , Anaplasma phagocytophilum/isolamento & purificação , Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Borrelia burgdorferi/isolamento & purificação , Coinfecção , Ehrlichiose/diagnóstico , Humanos , Doença de Lyme/diagnóstico , Masculino
15.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158895

RESUMO

Deer tick-transmitted Borrelia burgdorferisensu stricto (Lyme disease) and Babesia microti (babesiosis) increasingly burden public health across eastern North America. The white-footed mouse is considered the primary host for subadult deer ticks and the most important reservoir host for these and other disease agents. Local transmission is thought to be modulated by less reservoir-competent hosts, such as deer, diverting ticks from feeding on mice. We measured the proportion of mouse-fed or deer-fed host-seeking nymphs from 4 sites during 2 transmission seasons by blood meal remnant analysis using a new retrotransposon-based quantitative PCR (qPCR) assay. We then determined the host that was associated with the infection status of the tick. During the first year, the proportion of mouse-fed ticks ranged from 17% on mainland sites to 100% on an island, while deer-fed ticks ranged from 4% to 24%. The proportion of ticks feeding on mice and deer was greater from island sites than mainland sites (on average, 92% versus 43%). Mouse-fed ticks decreased significantly during year 2 in 3 of 4 sites (most were <20%), while deer-fed ticks increased for all sites (75% at one site). Overall, ticks were more likely to be infected when they had fed on mice (odds ratio [OR] of 2.4 and 1.6 for Borrelia and Babesia, respectively) and were less likely to be infected if they had fed on deer (OR, 0.8 and 0.4). We conclude that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.IMPORTANCE White-footed mice are thought to be the most important reservoir host for the deer tick-transmitted pathogens that cause Lyme disease and human babesiosis because they are the primary host for immature ticks. Transmission would be reduced, however, if ticks feed on deer, which are not capable of infecting ticks with either pathogen. By directly measuring whether ticks had fed on either mice or deer using a new quantitative PCR (qPCR) assay to detect remnants of host DNA leftover from the larval blood meal, we demonstrate that host utilization by ticks varies significantly over time and space and that mice often feed fewer ticks than expected. This finding has implications for our understanding of the ecology of these diseases and for the efficacy of control measures.


Assuntos
Babesia microti/isolamento & purificação , Borrelia burgdorferi/isolamento & purificação , Cervos , Ixodes/microbiologia , Peromyscus , Animais , DNA/análise , Cervos/sangue , Cervos/genética , Cervos/microbiologia , Feminino , New England , Ninfa/microbiologia , Peromyscus/sangue , Peromyscus/genética , Peromyscus/microbiologia , Retroelementos
16.
Folia Parasitol (Praha) ; 672020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33173020

RESUMO

Babesiosis is a tick-borne disease that may exhibit a broad range of clinical manifestations. According to the Food and Drug Administration (FDA), Babesia species belong to the most common transfusion-transmitted pathogens (FDA, May 2019), but the awareness of the disease caused by these parasitic protists is still low. In immunocompromised patients, the clinical course of babesiosis may be of extreme severity and may require hospital admission. We demonstrate a case of a young male who experienced severe polytrauma requiring repetitive blood transfusions. Six months later, the patient developed a classic triad of arthritis, conjunctivitis and non-specific urethritis. These symptoms largely mimicked Reiter's syndrome. The patient was later extensively examined by an immunologist, rheumatologist, urologist, and ophthalmologist with no additional medical findings. In the search for the cause of his symptoms, a wide laboratory testing for multiple human pathogens was performed and revealed a babesiosis infection. This was the first case of human babesiosis mimicking Reiter's syndrome. Following proper antimicrobial therapy, the patient fully recovered in four weeks. We aim to highlight that a search for Babesia species should be considered in patients with non-specific symptomatology and a history of blood transfusion or a possible tick exposure in pertinent endemic areas.


Assuntos
Artrite Reativa/diagnóstico , Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Hepatomegalia/diagnóstico por imagem , Adulto , Artrite Reativa/parasitologia , Babesiose/diagnóstico por imagem , Babesiose/parasitologia , República Tcheca , Hepatomegalia/parasitologia , Humanos , Masculino
17.
Infect Dis Poverty ; 9(1): 155, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176879

RESUMO

BACKGROUND: Babesiosis is an emerging tick-borne zoonotic infectious disease. Babesia microti is responsible for most cases of human babesiosis globally. It is important to investigate the prevalence of B. microti in the mammalian host population of a specific region in order to elucidate mechanisms of pathogen transmission and to define geographic areas where humans face the greatest risk of exposure. The aim of this study is to understand the prevalence and genotypes of B. microti in the small mammals that are found in Beijing, China. METHODS: We trapped small mammals from all of the 16 urban, suburban, and outer suburban districts of Beijing during the years 2014, 2017 and 2018. Genomic DNA was extracted from the heart tissues individually and the Babesia 18S rRNA gene was detected by PCR. The genotypes of B. microti were identified based on sequence alignments and phylogenetic analysis. The morphology of the parasites was observed under light microscopy. The risk factors were analyzed statistically based on both univariate analyses and multivariate logistic regression. RESULTS: A total of 1391 small mammals were collected. Positive infection of B. microti was detected in 12.1% (168/1391) of small mammals from 15 out of the 16 districts. Both Kobe-type and U.S.-type B. microti, accounting for 9.5% and 2.7%, respectively, were identified. Classic diverse morphologic forms of B. microti were observed. Specific types of ecological habitats including shrub areas, broad-leaved forest, and cropland were revealed to be risk factors associated with B. microti infection. CONCLUSIONS: This study demonstrated the wide prevalence of B. microti infection in eight species of small mammals in Beijing, with Kobe-type more prevalent than U.S.-type. This study provides fundamental information for the development of informed prevention and control measures by public health authorities; the data gathered indicates a need for further monitoring of both clinical diseases in individuals presenting with babesiosis-like symptoms, as well as the infection status of ticks in high risk areas.


Assuntos
Babesia microti/genética , Babesia microti/isolamento & purificação , Babesiose/epidemiologia , Mamíferos/parasitologia , Animais , Babesiose/transmissão , Pequim/epidemiologia , DNA de Protozoário/genética , Reservatórios de Doenças/parasitologia , Feminino , Genótipo , Humanos , Masculino , Mamíferos/genética , Filogenia , Reação em Cadeia da Polimerase , Prevalência , RNA Ribossômico 18S/genética , Fatores de Risco , Carrapatos/parasitologia , Zoonoses/epidemiologia , Zoonoses/transmissão
18.
Ticks Tick Borne Dis ; 11(6): 101504, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993925

RESUMO

Tickborne diseases are an increasing public health concern in the United States, where the majority of notifiable cases are caused by pathogens vectored by Ixodes ticks. To better monitor changes in acarological risk of human encounters with these ticks and their associated pathogens, the Centers for Disease Control and Prevention (CDC) recently established a national tick and tickborne pathogen surveillance program. Here, we describe and evaluate a new Multiplex PCR Amplicon Sequencing (MPAS) assay for potential use in surveillance programs targeting two common human-biting vector ticks, Ixodes scapularis and Ixodes pacificus. The ability of the MPAS assay to detect five Ixodes-associated human pathogens (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti) was compared to that of a previously published and routinely used probe-based (TaqMan) PCR testing algorithm for pathogen detection in Ixodes ticks. Assay performance comparisons included a set of 175 host-seeking Ixodes nymphs collected in Connecticut as well as DNA from our pathogen reference collection. The MPAS assay and the CDC standard TaqMan PCR pathogen testing algorithm were found to have equivalent detection sensitivity for Ixodes-associated human pathogens. However, the MPAS assay was able to detect a broader range of tick-associated microorganisms, more effectively detected co-infections of multiple pathogens in a single tick (including different species within the Borrelia burgdorferi sensu lato complex), and required a smaller volume of test sample (thus preserving more sample for future testing).


Assuntos
Anaplasma phagocytophilum/isolamento & purificação , Babesia microti/isolamento & purificação , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Ixodes/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Feminino , Ixodes/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/parasitologia , Especificidade da Espécie
19.
Parasitol Res ; 119(7): 2227-2235, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32435898

RESUMO

Babesiosis among humans is on the rise in North America. Current diagnostic assays for the screening of babesiosis require blood collection by venipuncture, which is an invasive method. Urine on the other hand is a desirable biospecimen for biomarker analysis of Babesia microti infections because it can be collected periodically and non-invasively. Our group uses a new class of biomarker harvesting nanocage technology, which, when combined with mass spectrometry (MS), can determine the presence of parasite proteins shed in different bodily fluids of mammalian hosts, including urine. Using the hamster model of babesiosis, our nanoparticle-MS approach identified several B. microti proteins in erythrocytes, plasma, and urine samples. Surface and secreted antigens previously shown to elicit host immune responses against the parasite were particularly abundant in erythrocytes and plasma compared to other proteins. Two of these antigens, BmSA1 and BMR1_03g00947, showed different localization patterns by immunofluorescence of infected erythrocytes. Hamster urine samples from parasitemic animals harbored lower numbers of B. microti proteins compared to erythrocytes and plasma, with glycolytic enzymes, cytoskeletal components, and chaperones being the most frequently detected proteins. By applying novel nanoparticle-MS methods, a high level of analytical sensitivity can be achieved to detect multiple B. microti proteins in blood and urine. This is generally difficult to obtain with other techniques due to the masking of parasite biomarkers by the complex biomolecular matrix of bodily fluids from the host.


Assuntos
Babesia microti/isolamento & purificação , Babesiose/diagnóstico , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Babesia microti/metabolismo , Babesiose/sangue , Babesiose/urina , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Cricetinae , Espectrometria de Massas , Proteômica , Proteínas de Protozoários/sangue , Proteínas de Protozoários/urina , Sensibilidade e Especificidade
20.
Vector Borne Zoonotic Dis ; 20(8): 633-635, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283047

RESUMO

Introduction: In North America, the blacklegged tick (Ixodes scapularis) is a vector of several human pathogens, and tick-borne disease incidence is increasing. Objectives: We estimated the prevalence of questing blacklegged ticks vectoring three zoonotic pathogens in Vilas County, Wisconsin. Materials and Methods: We collected 461 adult blacklegged ticks and used PCR to screen for the presence of pathogens that cause Lyme disease (Borrelia burgdorferi), human granulocytic anaplasmosis (HGA, Anaplasma phagocytophilum), and babesiosis (Babesia microti). Results: We found that 52.5% of ticks carried at least one pathogen. The estimated infection prevalence in the tick population was 17.4% (Lyme disease), 14.3% (HGA), and 6.5% (babesiosis). Multiple pathogens were present in 14.3% of ticks surveyed. Conclusion: About half of questing ticks tested in this study carried at least one zoonotic pathogen. Coinfection was common in our study area and, if not properly recognized, leads to greater risk of underdiagnosis.


Assuntos
Anaplasma phagocytophilum/isolamento & purificação , Babesia microti/isolamento & purificação , Borrelia burgdorferi/isolamento & purificação , Coinfecção/microbiologia , Ixodes/microbiologia , Animais , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA