Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.012
Filtrar
1.
Food Res Int ; 186: 114364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729726

RESUMO

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Assuntos
Contaminação de Alimentos , Triticum , Zearalenona , Zearalenona/análise , Triticum/química , Triticum/microbiologia , Contaminação de Alimentos/análise , Bacillus megaterium/enzimologia , Descontaminação/métodos , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Bacillus/enzimologia , Sementes/química , Sementes/microbiologia , Microscopia Eletrônica de Varredura
2.
Curr Microbiol ; 81(7): 179, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761211

RESUMO

Enormous aggregates of keratinous wastes are produced annually by the poultry and leather industries which cause environmental degradation globally. To combat this issue, microbially synthesized extracellular proteases known as keratinase are used widely which is effective in degrading keratin found in hair and feathers. In the present work, keratinolytic bacteria were isolated from poultry farm soil and feather waste, and various cultural conditions were optimized to provide the highest enzyme production for efficient keratin waste degradation. Based on the primary and secondary screening methods, the potent keratinolytic strain (HFS_F2T) with the highest enzyme activity 32.65 ± 0.16 U/mL was genotypically characterized by 16S rRNA sequencing and was confirmed as Bacillus velezensis HFS_F2T ON556508. Through one-variable-at-a-time approach (OVAT), the keratinase production medium was optimized with sucrose (carbon source), beef extract (nitrogen source) pH-7, inoculum size (5%), and incubation at 37 °C). The degree of degradation (%DD) of keratin wastes was evaluated after 35 days of degradation in the optimized keratinase production medium devoid of feather meal under submerged fermentation conditions. Further, the deteriorated keratin wastes were visually examined and the hydrolysed bovine hair with 77.32 ± 0.32% degradation was morphologically analysed through Field Emission Scanning Electron Microscopy (FESEM) to confirm the structural disintegration of the cuticle. Therefore, the current study would be a convincing strategy for reducing the detrimental impact of pollutants from the poultry and leather industries by efficient keratin waste degradation through the production of microbial keratinase.


Assuntos
Bacillus , Biodegradação Ambiental , Meios de Cultura , Plumas , Queratinas , Peptídeo Hidrolases , Bacillus/metabolismo , Bacillus/genética , Bacillus/enzimologia , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Animais , Plumas/metabolismo , Meios de Cultura/química , Aves Domésticas , RNA Ribossômico 16S/genética , Bovinos , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fermentação , Cabelo
3.
J Agric Food Chem ; 72(18): 10487-10496, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683727

RESUMO

The current study aimed to improve the acid resistance and thermostability of Bacillus velezensis α-amylase through site-directed mutagenesis, with a specific focus on its applicability to the feed industry. Four mutation sites, P546E, H572D, A614E, and K622E, were designed in the C domain of α-amylase, and three mutants, Mut1 (E), Mut2 (ED), and Mut3 (EDEE), were produced. The results showed that the specific activity of Mut3 was 50 U/mg higher than the original α-amylase (Ori) after incubation at 40 °C for 4 h. Compared to Ori, the acid resistance of Mut3 showed a twofold increase in specific activity at pH 2.0. Moreover, the results of preliminary feed hydrolysis were compared between Ori and Mut3 by designing three factors, three levels of orthogonal experiment for enzymatic hydrolysis time, feed quantity, and amount of amylase. It was observed that the enzymatic hydrolysis time and feed quantity showed an extremely significant difference (p < 0.01) in Mut3 compared to Ori. However, the amount of enzyme showed significant (p < 0.05) improvement in the enzymatic hydrolysis in Mut3 as compared to Ori. The study identified Mut3 as a promising candidate for the application of α-amylase in the feed industry.


Assuntos
Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Mutagênese Sítio-Dirigida , alfa-Amilases , Bacillus/enzimologia , Bacillus/genética , Bacillus/química , alfa-Amilases/genética , alfa-Amilases/química , alfa-Amilases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Hidrólise , Ração Animal/análise , Cinética , Temperatura Alta , Ácidos/metabolismo , Ácidos/química , Ácidos/farmacologia , Temperatura
4.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574878

RESUMO

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Assuntos
Bacillus , Detergentes , Serina Proteases , Detergentes/química , Detergentes/farmacologia , Serina Proteases/isolamento & purificação , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio
5.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642864

RESUMO

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Assuntos
Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Escherichia coli , Proteínas Recombinantes , Bacillus/enzimologia , Bacillus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/biossíntese , Expressão Gênica , Temperatura , Especificidade por Substrato
6.
Chembiochem ; 25(10): e202300846, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38502784

RESUMO

Arylamines are essential building blocks for the manufacture of valuable pharmaceuticals, pigments and dyes. However, their current industrial production involves the use of chemocatalytic procedures with a significant environmental impact. As a result, flavin-dependent nitroreductases (NRs) have received increasing attention as sustainable catalysts for more ecofriendly synthesis of arylamines. In this study, we assessed a novel NR from Bacillus tequilensis, named BtNR, for the synthesis of pharmaceutically relevant arylamines, including valuable synthons used in the manufacture of blockbuster drugs such as vismodegib, sonidegib, linezolid and sildenafil. After optimizing the enzymatic reaction conditions, high conversion of nitroaromatics to arylamines (up to 97 %) and good product yields (up to 56 %) were achieved. Our results indicate that BtNR has a broad substrate scope, including bulky nitro benzenes, nitro pyrazoles and nitro pyridines. Hence, BtNR is an interesting biocatalyst for the synthesis of pharmaceutically relevant amine-functionalized aromatics, providing an attractive alternative to traditional chemical synthesis methodologies.


Assuntos
Aminas , Bacillus , Nitrorredutases , Nitrorredutases/metabolismo , Bacillus/enzimologia , Aminas/química , Aminas/metabolismo , Aminas/síntese química , Biocatálise , Estrutura Molecular
7.
Int J Biol Macromol ; 266(Pt 1): 131154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547938

RESUMO

Tanneries are one of the most polluted industries known for production of massive amount of solid and liquid wastes without proper management and disposal. In this project we demonstrated the ecofriendly single step dehairing of leather hides with minimum pollution load. In this study, Bacillus species (Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P) capable of producing proteases was successfully isolated by employing the new optimized selective media named M9-PEA as confirmed by 16sRNA genes sequencing. Sequence of 1493 bp long 16S rRNA genes of Bacillus paralicheniformis strain BL.HK and Bacillus cereus strain BS. P was submitted to GenBank under the accession number OP612692.1, OP612721.1 respectively The Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P produced extracellur proteases of 28 and 37 KDa as resolved by SDS-PAGE respectively. The enzymes showed temperature optima at 50 °C and 55 °C and pH optima at 8.5, 9.5 respectively. The Proteases of Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P were employed for dehairing of animal hides. The process resulted in significant removal of interfibriller substances without damage to collagen layer after one hour treatment, which was confirmed by histology, scanning electron microscopy. The quantification of various skin constituents (collagen, uronic acid, hexosamines, and GAGs) and pollution load parameters revealed that enzymatic treatment are more reliable. The results of skin application trials at industrial level with complete elimination of chemicals remark the biotechnological potential of these proteases for ecofriendly dehairing of animal hides without affecting the quality of the leathers produced.


Assuntos
Bacillus , Peptídeo Hidrolases , Bacillus/enzimologia , Bacillus/genética , Animais , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Curtume , Temperatura , RNA Ribossômico 16S/genética , Filogenia
8.
Protein J ; 43(1): 96-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127181

RESUMO

Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from P. putida (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in Bacillus isolates and limited resemblance of ycsA-encoded protein sequences with pTDH rendered Bacillus TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from B. subtilis 168 (168bTDH) and B. licheniformis DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of E. coli BL21(DE3) cells, could significantly catalyze L-tartrate and meso-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.


Assuntos
Oxirredutases do Álcool , Bacillus , Bacillus/enzimologia , Bacillus/genética , Catálise , Escherichia coli/genética , Cinética , Simulação de Acoplamento Molecular , Especificidade por Substrato , Tartaratos
9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982314

RESUMO

The folding and stability of proteins are often studied via unfolding (and refolding) a protein with urea. Yet, in the case of membrane integral protein domains, which are shielded by a membrane or a membrane mimetic, urea generally does not induce unfolding. However, the unfolding of α-helical membrane proteins may be induced by the addition of sodium dodecyl sulfate (SDS). When protein unfolding is followed via monitoring changes in Trp fluorescence characteristics, the contributions of individual Trp residues often cannot be disentangled, and, consequently, the folding and stability of the individual domains of a multi-domain membrane protein cannot be studied. In this study, the unfolding of the homodimeric bacterial ATP-binding cassette (ABC) transporter Bacillus multidrug resistance ATP (BmrA), which comprises a transmembrane domain and a cytosolic nucleotide-binding domain, was investigated. To study the stability of individual BmrA domains in the context of the full-length protein, the individual domains were silenced by mutating the existent Trps. The SDS-induced unfolding of the corresponding constructs was compared to the (un)folding characteristics of the wild-type (wt) protein and isolated domains. The full-length variants BmrAW413Y and BmrAW104YW164A were able to mirror the changes observed with the isolated domains; thus, these variants allowed for the study of the unfolding and thermodynamic stability of mutated domains in the context of full-length BmrA.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Bacillus , Farmacorresistência Bacteriana Múltipla , Desdobramento de Proteína , Trifosfato de Adenosina , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dobramento de Proteína , Ureia/química , Bacillus/enzimologia , Bacillus/genética
10.
World J Microbiol Biotechnol ; 38(11): 215, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056962

RESUMO

Plant metabolism interacts strongly with the plant microbiome. Glucosinolates, secondary metabolites synthesized by Brassica plants, are hydrolyzed by myrosinase into bioactive compounds of great importance in human health and plant protection. Compared with myrosinase from plant sources, myrosinase enzymes of microbial origin have not been extensively investigated. Therefore, seven endophytic strains corresponding to Bacillus sp. were isolated from Eruca vesicaria ssp. sativa plants that could hydrolyse glucosinolates (sinigrin) in the culture medium and showed myrosinase activity (0.08-19.92 U mL-1). The bglA myrosinase-related gene encoding the 6-phospho-ß-glucosidase (GH 1) from Bacillus sp. NGB-B10, the most active myrosinase-producing bacterium, was successfully identified. Response surface methodology (RSM) was applied to statistically optimize culture conditions for myrosinase production from Bacillus sp. strain NGB-B10. The Plackett-Burman design indicated that nitrogen concentration, incubation period, and agitation speed were the significant parameters in myrosinase production. The application of the Box-Behnken design of RSM resulted in a 10.03-fold increase in enzyme activity as compared to the non-optimized culture conditions. The myrosinase was partially purified by 40% fractionation followed by SDS-PAGE analysis which yielded two subunits that had a molecular weight of 38.6 and 35.0 KDa. The purified enzyme was stable under a broad range of pH (5.5-10) and temperatures (10-65 °C). The hydrolysis products released by bacterial myrosinase from some glucosinolate extracts had higher and/or equivalent in vitro antagonistic activity against several phytopathogenic fungi compared to the nystatin (a broad-spectrum antifungal agent). This study provides original information about a new source of bacterial myrosinase and affords an optimized method to enhance myrosinase production.


Assuntos
Bacillus , Brassica , Glicosídeo Hidrolases , Bacillus/enzimologia , Bacillus/genética , Brassica/química , Glucosinolatos/química , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
11.
Sci Rep ; 12(1): 8926, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624119

RESUMO

There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L-1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h-1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.


Assuntos
Fosfatase Ácida , Bacillus , Fosfatos , Fosfatase Ácida/biossíntese , Bacillus/enzimologia , Fertilizantes , Fosfatos/metabolismo
12.
Biochimie ; 198: 48-59, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307483

RESUMO

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.


Assuntos
Acetilesterase , Bacillus , Proteínas de Bactérias , Acetilesterase/química , Acetilesterase/genética , Sequência de Aminoácidos/genética , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Esterases/metabolismo , Mutagênese Sítio-Dirigida , Especificidade por Substrato/genética
13.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163789

RESUMO

Small cationic guanyl-preferring ribonucleases (RNases) produced by the Bacillus species share a similar protein tertiary structure with a high degree of amino acid sequence conservation. However, they form dimers that differ in conformation and stability. Here, we have addressed the issues (1) whether the homologous RNases also have distinctions in catalytic activity towards different RNA substrates and interactions with the inhibitor protein barstar, and (2) whether these differences correlate with structural features of the proteins. Circular dichroism and dynamic light scattering assays revealed distinctions in the structures of homologous RNases. The activity levels of the RNases towards natural RNA substrates, as measured spectrometrically by acid-soluble hydrolysis products, were similar and decreased in the row high-polymeric RNA >>> transport RNA > double-stranded RNA. However, stopped flow kinetic studies on model RNA substrates containing the guanosine residue in a hairpin stem or a loop showed that the cleavage rates of these enzymes were different. Moreover, homologous RNases were inhibited by the barstar with diverse efficiency. Therefore, minor changes in structure elements of homologous proteins have a potential to significantly effect molecule stability and functional activities, such as catalysis or ligand binding.


Assuntos
Bacillus/enzimologia , RNA/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Bacillus/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Difusão Dinâmica da Luz , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
14.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140756, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026466

RESUMO

Nicking endonuclease Nt.BspD6I (Nt.BspD6I) is the large subunit of the heterodimeric restriction endonuclease R.BspD6I. It recognizes the short specific DNA sequence 5´'- GAGTC and cleaves only the top strand in dsDNA at a distance of four nucleotides downstream the recognition site toward the 3´'-terminus. A mechanism of interaction of this protein with DNA is still unknown. Here we report the crystal structure of Cysteine-free Nt.BspD6I, with four cysteine residues (11, 160, 508, 578) substituted by serine, which was determined with a resolution of 1.93 Å. A comparative structural analysis showed that the substitution of cysteine residues induced marked conformational changes in the N-terminal recognition and the C-terminal cleavage domains. As a result of this changes were formed three new hydrogen bonds and the electrostatic field in these regions changed compared with wild type Nt.BspD6I. The substitution of cysteine residues did not alter the nicking function of Cysteine-free Nt.BspD6I but caused change in the activity of Cysteine-free heterodimeric restriction endonuclease R.BspD6I due to a change in the interaction between its large and small subunits. The results obtained contribute to the identification of factors influencing the interactions of subunits in the heterodimeric restriction enzyme R.BspD6I.


Assuntos
Cisteína/química , Desoxirribonuclease I/química , Endonucleases/química , Serina/química , Bacillus/enzimologia , Sítios de Ligação , Cristalografia por Raios X/métodos , DNA/química , DNA/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Dimerização , Endonucleases/genética , Endonucleases/metabolismo , Ligação de Hidrogênio , Hidrólise , Estrutura Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas/química
15.
World J Microbiol Biotechnol ; 38(2): 36, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993677

RESUMO

4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bactérias/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Oligossacarídeos , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
16.
Microb Cell Fact ; 21(1): 4, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983528

RESUMO

Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC-MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 µg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bacillus/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , China , Cromatografia Líquida , Farmacorresistência Bacteriana Múltipla , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Espectrometria de Massas em Tandem
17.
Int J Biol Macromol ; 194: 800-810, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848239

RESUMO

The hydrophobic nature of wool induced by its surface lipid barrier hinders its wettability during processing. Scouring of wool is conducted to remove this lipid barrier and facilitate any wet processes. Scouring of wool is conducted using soda ash followed by rinsing with huge amount of water to ensure complete removal of alkali. This work aimed at utilization of thermophilic lipase enzyme for removal of wool surface lipid barrier without deterioration on the fibre interior. A thermally stable lipase enzyme was produced from thermophilic microorganism; namely Bacillus aryabhattai B8W22, and was utilized in bio-scouring of wool. The produced enzyme was immobilized on sericin-based discs to enhance its stability and to make it reusable. The activity of both free and immobilized lipase enzymes at different conditions was assessed. The effects of bio-scouring of wool on its dyeability with acid, basic, and reactive dyes, as well as on some of its inherent properties, were monitored. Results showed that the bio-scoured wool exhibits enhanced dyeability with the said classes of dyes more than that of conventionally scoured samples. One-bath scouring and dyeing of wool fibres in two successive steps was conducted to reduce consumption of water and energy during wet processing of wool.


Assuntos
Enzimas Imobilizadas , Lipase/química , Fibra de Lã/análise , Lã/química , Animais , Bacillus/classificação , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Corantes/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipólise , Estrutura Molecular , Temperatura
18.
Sci Rep ; 11(1): 23982, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907211

RESUMO

Identification of novel enzymes from lignin degrading microorganisms will help to develop biotechnologies for biomass valorization and aromatic hydrocarbons degradation. Bacillus ligniniphilus L1 grows with alkaline lignin as the single carbon source and is a great candidate for ligninolytic enzyme identification. The first dioxygenase from strain L1 was heterologously expressed, purified, and characterized with an optimal temperature and pH of 32.5 °C and 7.4, respectively. It showed the highest activity with 3-ethylcatechol and significant activities with other substrates in the decreasing order of 3-ethylcatechol > 3-methylcatechol > 3-isopropyl catechol > 2, 3-dihydroxybiphenyl > 4-methylcatechol > catechol. It did not show activities against other tested substrates with similar structures. Most reported catechol 2,3-dioxygenases (C23Os) are Fe2+-dependent whereas Bacillus ligniniphilus catechol 2,3-dioxygenase (BLC23O) is more Mn2+- dependent. At 1 mM, Mn2+ led to 230-fold activity increase and Fe2+ led to 22-fold increase. Sequence comparison and phylogenetic analyses suggested that BL23O is different from other Mn-dependent enzymes and uniquely grouped with an uncharacterized vicinal oxygen chelate (VOC) family protein from Paenibacillus apiaries. Gel filtration analysis showed that BLC23O is a monomer under native condition. This is the first report of a C23O from Bacillus ligniniphilus L1 with unique substrate preference, metal-dependency, and monomeric structure.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Catecol 2,3-Dioxigenase/química , Ferro/química , Bacillus/genética , Proteínas de Bactérias/genética , Catecol 2,3-Dioxigenase/genética , Especificidade por Substrato
19.
Open Biol ; 11(12): 210182, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847772

RESUMO

Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/ß hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.


Assuntos
Bacillus/enzimologia , Esterases/química , Bacillus/química , Proteínas de Bactérias/química , Domínio Catalítico , Temperatura Baixa , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
20.
PLoS One ; 16(11): e0259005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723978

RESUMO

BACKGROUND: Emerging worldwide in the past decade, there has been a significant increase in multidrug-resistant bacteria from serious nosocomial infections, especially carbapenemase-producing Gram-negative bacilli that have emerged worldwide. The objective of this study is to investigate carbapenem resistance in Gram-negative bacilli bacteria using phenotypic detection, antimicrobial resistance profiles and genotypic characterisation methods. METHODS: 200 Gram-negative bacilli isolates were collected from different clinical specimens. All clinical samples were exposed to isolation and identification of significant pathogens applying bacteriological examination and an automated Vitek-2 system. The isolates were subjected to susceptibility tests by the Vitek-2 automated system and those isolates that were resistant to beta-lactam drugs, including carbapenems, third-generation cephalosporines or cefoxitin, were selected for phenotyping using Carba plus disc system assay for detection of carbapenemase-producing isolates. These isolates were further confirmed by molecular detection. PCR was used for the detection carbapenem-resistant genes (OXA-48, IMP, NDM, VIM, and KPC). RESULTS: 110 (55%) of 200 Gram-negative bacilli were identified as beta-lactam-resistant isolates. The frequency of carbapenem-resistant isolates was calculated to be 30.9% (n = 34/110). A collection totalling 65/110 (59%) isolates were identified as carbapenemase producers by phenotypic method. Moreover, among the 65 carbapenemase-producing Gram-negative isolates with a positive phenotype-based result, 30 (46%), 20 (30%) and 18 (27%) isolates were positive for OXA-48, KPC and MBL enzymes, respectively, as well as the production of 27% of AmpC with porin loss. Tigecycline was the most effective antibiotic that affected 70% of MDR isolates, but high rates of resistance were detected to other tested antimicrobials. Of interest, a high incidence of MDR, XDR and PDR profiles were observed among all carbapenemase-producing isolates. 36% (24/65) of the tested isolates were MDR to 3 to 5 antimicrobial classes. 29% (17/65) of the recovered isolates were XDR to 6 to 7 antimicrobial classes. Alarmingly, 24% (16/65) of isolates displayed PDR to all the tested 8 antimicrobial classes. Genotype assay, including 53 phenotypically confirmed carbapenemase-producing isolates of Gram-negative bacilli, found 51(96%) isolates were harbouring one or more genes. The most common carbapenemase gene was bla NDM 83% (44/53) followed by bla OXA-48 75% (40/53), bla VIM 49% (26/53) and bla IMP 43% (23/53), while the gene bla KPC was least frequent 7% (4/53). 92% (46/51) of isolates were involved in the production of more than one carbapenemase gene. CONCLUSION: This study demonstrated the emergence of carbapenemase-producing Gram-negative pathogens implicated in healthcare-related infections. Accurate identification of carbapenem-resistant bacterial pathogens is essential for patient treatment, as well as the development of appropriate contamination control measures to limit the rapid spread of pathogens. Tigecycline exhibited potent antimicrobial activity against MDR, XDR and PDR-producing strains that establish a threatening alert which indicates the complex therapy of infections caused by these pathogens.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , beta-Lactamases/genética , Anti-Infecciosos/farmacologia , Bacillus/efeitos dos fármacos , Bacillus/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genótipo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Testes de Sensibilidade Microbiana , Fenótipo , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA