Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Agric Food Chem ; 72(20): 11577-11586, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721818

RESUMO

Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Engenharia Metabólica , Monoéster Fosfórico Hidrolases , Plasmídeos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Técnicas de Inativação de Genes
2.
Food Res Int ; 183: 114202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760133

RESUMO

Pixian broad bean paste is a renowned fermented seasoning. The fermentation of broad bean is the most important process of Pixian broad bean paste. To enhance the flavor of tank-fermented broad bean paste, salt-tolerant Bacillus amyloliquefaciens strain was inoculated, resulting in an increase in total amount of volatile compounds, potentially leading to different flavor characteristics. To investigate the fermentation mechanism, monoculture simulated fermentation systems were designed. Metabolomics and transcriptomics were used to explore Bacillus amyloliquefaciens' transcriptional response to salt stress and potential aroma production mechanisms. The results highlighted different metabolite profiles under salt stress, and the crucial roles of energy metabolism, amino acid metabolism, reaction system, transportation system in Bacillus amyloliquefaciens' hypersaline stress response. This study provides a scientific basis for the industrial application of Bacillus amyloliquefaciens and new insights into addressing the challenges of poor flavor quality in tank fermentation products.


Assuntos
Bacillus amyloliquefaciens , Fermentação , Metabolômica , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Transcriptoma , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Perfilação da Expressão Gênica , Paladar , Fabaceae/microbiologia
3.
Waste Manag ; 181: 89-100, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38598883

RESUMO

High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.


Assuntos
Bacillus amyloliquefaciens , Lipopeptídeos , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Lipopeptídeos/metabolismo , Tolerância ao Sal , Água do Mar/microbiologia , Alimentos , Perda e Desperdício de Alimentos
4.
Appl Microbiol Biotechnol ; 108(1): 311, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676716

RESUMO

As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.


Assuntos
Bacillus amyloliquefaciens , Engenharia Metabólica , Tensoativos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Engenharia Metabólica/métodos , Tensoativos/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Regiões Promotoras Genéticas , Ligases/genética , Ligases/metabolismo
5.
Antonie Van Leeuwenhoek ; 117(1): 16, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189906

RESUMO

The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and ß-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.


Assuntos
Bacillus amyloliquefaciens , Cyperaceae , Bacillus amyloliquefaciens/genética , Rizosfera , Pradaria , Cloreto de Sódio , Peptídeo Hidrolases
6.
World J Microbiol Biotechnol ; 40(2): 64, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189984

RESUMO

We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.


Assuntos
Bacillus amyloliquefaciens , Carboxiliases , Bacillus amyloliquefaciens/genética , Carboxiliases/genética , Ácido Acético , Biofilmes
7.
Int J Biol Macromol ; 256(Pt 2): 128468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035962

RESUMO

Bacillus amyloliquefaciens (BA) is considered as an important industrial strain for heterologous proteins production. However, its severe autolytic behavior leads to reduce the industrial production capacity of the chassis cells. In this study, we aimed to evaluate the autolysis of N-acetylmuranyl-L-alanine amidase in BA TCCC11018, and further slowed down the cell lysis for improved the heterologous protein production by a series of modifications. Firstly, we identified six N-acetylmuramic acid-L-alanines by bioinformatics, and analyzed the transcriptional levels at different culture time points by transcriptome and quantitative real-time PCR. Then, by establishing an efficient CRISPR-nCas9 gene editing method, N-acetylmuramic acid-L-alanine genes were knocked out or overexpressed to verify its effect on cell lysis. Then, by single or tandem knockout N-acetylmuramic acid-L-alanines, it was determined that the reasonable modification of LytH and CwlC1 can slow down cell lysis. After 48 h of culture, the autolysis rate of the mutant strain BA ΔlytH-cwlC1 decreased by 4.83 %, and the amylase activity reached 176 U/mL, which was 76.04 % higher than that of the control strain BA Δupp. The results provide a reference for mining the functional characteristics of autolysin in Bacillus spp., and provide from this study reveal valuable insights delaying the cell lysis and increasing heterologous proteins production.


Assuntos
Bacillus amyloliquefaciens , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ácidos Murâmicos , Alanina
8.
Food Res Int ; 175: 113752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129052

RESUMO

Fungi and subsequent mycotoxins contamination in agricultural products have caused enormous losses and great harm to human and animal health. Biological control has attracted the attention of researchers due to its advantages, including mild conditions, low cost, high efficiency and low nutrient loss. In this study, a newly isolated strain Bacillus amyloliquefaciens A-1 (A-1), was screened for its ability to inhibit the growth and Aflatoxin B1 (AFB1) production of Aspergillus flavus NRRL 3357. Electron microscopy results revealed that mycelium and conidia of A. flavus were destroyed by A-1, affecting hyphae, cell walls, cell membranes and organelles. RNA-seq analysis indicated disturbance in gene expression profiles of A. flavus, including amino acid degradation and starch and sucrose metabolism pathways. Importantly, the biosynthesis of AFB1 was significantly inhibited by the down-regulation of key regulatory genes, aflR and aflS, and the simultaneous down-regulation of most structural genes. Genome analysis predicted six secondary metabolites biosynthetic gene clusters. Then, four surfactin synthesized by cluster C were identified as the main active substance of A-1 using HPLC-Q-TOF-MS. The addition of alanine, threonine, Fe2+ increased surfactin production. Notably, the overexpression of comX also improved surfactin production. The vivo test results indicated that A-1 could significantly inhibit the decay of pear by Aspergillus westerdijkiae, and the mildew of maize and peanuts. Especially, the overexpression of comX in A-1 could enhance the inhibitory activity. In conclusion, the inhibition mechanism of A-1 was revealed, and comX was found can improve the production of surfactin and subsequent activities, which provides the scientific basis for the development of biocontrol agents to reduce spoilage in agricultural products.


Assuntos
Bacillus amyloliquefaciens , Humanos , Bacillus amyloliquefaciens/genética , Engenharia Metabólica , Aspergillus flavus/genética , Aflatoxina B1
9.
Int J Biol Macromol ; 253(Pt 5): 127179, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802457

RESUMO

Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, autolysis affects the growth of bacteria, further affecting the yield of target products. Besides, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which further leads to a lack of high-throughput screening tools. Here, we constructed a genome-wide crRNA inhibition library based on the CRISPR/dCpf1 system and high-throughput screening of related genes affecting the cell growth and autolysis using flow cytometry in B. amyloliquefaciens LB1ba02. The whole genome crRNA library was first validated for resistance to the toxic chemical 5-fluorouracil, and then used for validation of essential genes. In addition, seven gene loci (oppD, flil, tuaA, prmA, sigO, hslU, and GE03231) that affect the growth characteristics of LB1ba02 were screened. Among them, the Opp system had the greatest impact on growth. When the expression of operon oppA-oppB-oppC-oppD-oppF was inhibited, the cell growth difference was most significant. Inhibition of other sites could also promote rapid growth of bacteria to varying degrees; however, inhibition of GE03231 site accelerated cell autolysis. Therefore, the whole genome crRNA inhibition library is well suited for B. amyloliquefaciens LB1ba02 and can be further applied to high-throughput mining of other functional genes.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ensaios de Triagem em Larga Escala , Óperon
10.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740438

RESUMO

AIM: Arsenic contamination in agricultural soils poses a serious health risk for humans. Bacteria that produce siderophores, primarily for iron acquisition, can be relevant in combating arsenic toxicity in agricultural soils and simultaneously act as biocontrol agents against plant diseases. We evaluated the arsenic bioremediation and biocontrol potential of the rhizosphere isolate Bacillus amyloliquefaciens BM3 and studied the interaction between the purified siderophore bacillibactin and arsenic. METHODS AND RESULTS: BM3 showed high arsenic resistance [MIC value 475 and 24 mM against As(V) and As(III), respectively] and broad spectrum in-vitro antagonism against several phytopathogenic fungi. BM3 was identified by biochemical characterization and 16S rRNA gene sequencing. Scanning electron microscopy (SEM) analysis revealed increased cell size of BM3 when grown in presence of sub-lethal arsenic concentrations. Bioremediation assays showed a 74% and 88.1% reduction in As(V) and As(III) concentrations, respectively. Genetic determinants for arsenic resistance (arsC and aoxB) and antifungal traits (bacAB and chiA) were detected by PCR. Arsenic chelating ability of bacillibactin, the siderophore purified from culture filtrate of BM3 and identified through spectroscopic data analysis, was observed in CAS assay and fluorescence spectrometry. In-vivo application of talc-based formulation of BM3 in brinjal seedlings showed significant reduction in Fusarium wilt disease. CONCLUSION: Strain B. amyloliquefaciens BM3 may be useful in arsenic bioremediation and may be considered for large field trials as an alternative to chemical fungicides by inhibiting soil borne pathogens.


Assuntos
Arsênio , Bacillus amyloliquefaciens , Fusarium , Solanum melongena , Humanos , Bacillus amyloliquefaciens/genética , Sideróforos , Fusarium/genética , Solanum melongena/genética , RNA Ribossômico 16S/genética , Plantas , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706503

RESUMO

While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.


Assuntos
Bacillus amyloliquefaciens , Probióticos , Bacillus amyloliquefaciens/genética , Rizosfera , Engenharia , Agricultura
12.
BMC Plant Biol ; 23(1): 410, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667202

RESUMO

BACKGROUND: Early leaf spot disease, caused by Cercospora arachidicola, is a devastating peanut disease that has severely impacted peanut production and quality. Chemical fungicides pollute the environment; however, Bacillus bacteria can be used as an environmentally friendly alternative to chemical fungicides. To understand the novel bacterial strain and unravel its molecular mechanism, De novo whole-genome sequencing emerges as a rapid and efficient omics approach. RESULTS: In the current study, we identified an antagonistic strain, Bacillus amyloliquefaciens TA-1. In-vitro assay showed that the TA-1 strain was a strong antagonist against C. arachidicola, with an inhibition zone of 88.9 mm. In a greenhouse assay, results showed that the TA-1 strain had a significant biocontrol effect of 95% on peanut early leaf spot disease. De novo whole-genome sequencing analysis, shows that strain TA-1 has a single circular chromosome with 4172 protein-coding genes and a 45.91% guanine and cytosine (GC) content. Gene function was annotated using non-redundant proteins from the National Center for Biotechnology Information (NCBI), Swiss-Prot, the Kyoto Encyclopedia of Genes and Genomes (KEGG), clusters of orthologous groups of proteins, gene ontology, pathogen-host interactions, and carbohydrate-active enZYmes. antiSMASH analysis predicted that strain TA-1 can produce the secondary metabolites siderophore, tailcyclized peptide, myxochelin, bacillibactin, paenibactin, myxochelin, griseobactin, benarthin, tailcyclized, and samylocyclicin. CONCLUSION: The strain TA-1 had a significant biological control effect against peanut early leaf spot disease in-vitro and in greenhouse assays. Whole genome analysis revealed that, TA-1 strain belongs to B. amyloliquefaciens and could produce the antifungal secondary metabolites.


Assuntos
Bacillus amyloliquefaciens , Fungicidas Industriais , Arachis/genética , Bacillus amyloliquefaciens/genética , Mycosphaerella
13.
ACS Synth Biol ; 12(8): 2382-2392, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37499217

RESUMO

Transcriptional factors-based biosensors are commonly used in metabolic engineering for inducible control of gene expression and related applications such as high-throughput screening and dynamic pathway regulations. Mining for novel transcriptional factors is essential for expanding the usability of these toolsets. Here, we report the identification, characterization, and engineering of a phenolic acid responsive regulator PadR from Bacillus amyloliquefaciens (BaPadR). This BaPadR-based biosensor system showed a unique ligand preference and exhibited a high output strength comparable to that of commonly used inducible expression systems. Through engineering the DNA binding region of BaPadR, we further enhanced the dynamic range of the biosensor system. The DNA sequences that are responsible for BaPadR recognition were located by promoter truncation and hybrid promoter building. To further explore the tunability of the sensor system, base substitutions were performed on the BaPadR binding region of the phenolic acid decarboxylase promoter (PpadC) and the hybrid promoter. This novel biosensor system can serve as a valuable tool in future synthetic biology applications.


Assuntos
Bacillus amyloliquefaciens , Técnicas Biossensoriais , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hidroxibenzoatos/metabolismo , Regiões Promotoras Genéticas/genética , Engenharia Metabólica
14.
Microbiol Spectr ; 11(4): e0104423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37432122

RESUMO

Bacillus amyloliquefaciens WH1 produces multiple antibiotics with antimicrobial activity and can control bacterial wilt disease caused by Ralstonia solanacearum. Antibacterial substances produced by WH1 and the regulation mechanism are unknown. In this study, it was found that difficidin, and to a minor extent bacillibactin, exhibited antibacterial activity against R. solanacearum. Lipopeptides, macrolactin, bacillaene, and bacilysin had no antibacterial activity. Ferric iron uptake transcriptional regulator Fur bound the promoter region of the dhb gene cluster of bacillibactin biosynthesis. Mutant Δfur showed a higher bacillibactin production and its antibacterial activity increased by 27% than wild-type WH1. Difficidin inhibited R. solanacearum growth and disrupted the integrity of the cells. Lack of transcription factor Spo0A abolished difficidin biosynthesis. Spo0A bound the promoter region of the dfn gene cluster of difficidin biosynthesis. Changing phosphorylation levels of Spo0A via deletion of phosphatase gene spo0E and histidine kinases genes kinA and kinD affected the biosynthesis of difficidin. Deletion of spo0E increased the phosphorylation level of Spo0A and consequently improved the difficidin production. The antibacterial activity of mutant Δspo0E and ΔkinA increased by 12% and 19%. The antibacterial activity of mutant ΔkinD decreased by 28%. Collectively, WH1 produced difficidin to disrupt the cell of R. solanacearum and secreted siderophore bacillibactin to compete for ferric iron. Spo0A regulated difficidin biosynthesis. Spo0A regulates quorum-sensing responses and controls the biosynthesis of secondary metabolites in B. amyloliquefaciens. This study has important findings in the regulation mechanism of antibiotic synthesis and helps to improve antibiotic yield in Bacillus. IMPORTANCE Pathogen R. solanacearum causes bacterial wilt disease in many crops. There is no chemical bactericide that can control bacterial wilt disease. It is vital to find antagonistic microorganisms and antibacterial substances that can efficiently control bacterial wilt disease. B. amyloliquefaciens WH1 could inhibit the growth of R. solanacearum. Via genetic mutation, it was found that difficidin and to a minor extent bacillibactin produced by WH1 acted efficiently against R. solanacearum. The transcription factor Spo0A regulated the synthesis of difficidin. Phosphorylation of Spo0A affected the production of difficidin. Increasing the phosphorylation level of Spo0A improved the difficidin production and antibacterial activity. In-depth analysis of the regulation mechanism of antibiotic difficidin is meaningful for enhancing the control efficiency of WH1. B. amyloliquefaciens WH1 and the antibacterial substances have vast application potential in controlling bacterial wilt disease.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bactérias/metabolismo , Antibacterianos , Ferro/metabolismo , Doenças das Plantas/microbiologia
15.
J Agric Food Chem ; 71(28): 10683-10692, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427858

RESUMO

Plipastatin is a cyclic lipopeptide synthesized by non-ribosomal peptide synthetases (NRPS), which has a diverse range of applications in postharvest preservation of fruits and vegetables, biological control, and feed processing. Whereas the yield of plipastatin in wild Bacillus sp. is low, its chemical structure is complex and challenging to synthesize, significantly limiting its production and application. ComQXPA-PsrfA, a quorum-sensing (QS) circuit from Bacillus amyloliquefaciens, was constructed in this study. Two QS promoters MuPsrfA and MtPsrfA, with 35 and 100% increased activity, respectively, were obtained by mutating the original promoter PsrfA. Thus, the natural promoter of plipastatin was replaced by a QS promoter to achieve the dynamic regulation of plipastatin, which increased the yield of plipastatin by 3.5 times. Integrating ComQXPA into plipastatin mono-producing M-24:MtPsrfA increased the yield of plipastatin to 3850 mg/L, representing the highest yield reported to date. Four new plipastatins were identified via UPLC-ESI-MS/MS and GC-MS analysis of fermentation products of mono-producing engineered strains. Among them, three plipastatins contained two double bonds in the fatty acid side chain, representing the first example of a new type of plipastatin. Our results indicate that the QS system ComQXPA-PsrfA of Bacillus can dynamically regulate plipastatin production, and the pipeline could be extended to the other strains to regulate target products dynamically.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Bacillus subtilis , Bacillus amyloliquefaciens/genética , Espectrometria de Massas em Tandem , Bacillus/genética , Ácidos Graxos/química , Percepção de Quorum
16.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37188640

RESUMO

AIMS: Develop quantitative assays (qPCR) to determine the wheat rhizosphere competence of inoculant strains Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6, and their suppressive efficacies against the sharp eyespot pathogen Rhizoctonia cerealis. METHODS AND RESULTS: Antimicrobial metabolites of strains W10 and FD6 decreased in vitro growth of R. cerealis. A qPCR assay for strain W10 was designed from a diagnostic AFLP fragment and the rhizosphere dynamics of both strains in wheat seedlings were compared by culture-dependent (CFU) and qPCR assays. The qPCR minimum detection limits for strains W10 and FD6 were log 3.04 and log 4.03 genome (cell) equivalents g-1 soil, respectively. Inoculant soil and rhizosphere abundance determined by CFU and qPCR were highly correlated (r > 0.91). In wheat bioassays, rhizosphere abundance of strain FD6 was up to 80-fold greater (P < 0.001) than strain W10 at 14 and 28 days postinoculation. Both inoculants reduced (P < 0.05) rhizosphere soil and root abundance of R. cerealis by up to 3-fold. CONCLUSIONS: Strain FD6 exhibited greater abundance in wheat roots and rhizosphere soil than strain W10 and both inoculants decreased the rhizosphere abundance of R. cerealis.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Triticum , Rizosfera , Solo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Rhizoctonia , Doenças das Plantas/prevenção & controle
17.
J Basic Microbiol ; 63(8): 930-943, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37189223

RESUMO

Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-indirect way. The oxidant H2 O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2 O2 improved surfactin production but inhibited biofilm formation by a surfactin-indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2 O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin-direct or -indirect way in Bacillus amyloliquefaciens WH1.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Tensoativos/farmacologia , Biofilmes , Oxirredução , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo
18.
PeerJ ; 11: e15236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214100

RESUMO

Bacillus amyloliquefaciens is an interesting microbe in the food processing and manufacturing industries. Non-coding small RNAs (sRNAs) have been shown to play a crucial role in the physiology and metabolism of bacteria by post-transcriptionally regulating gene expression. This study investigated the function of novel sRNA FenSr3 by constructing fenSr3 deficient strain and complementary strains in B. amyloliquefaciens LPB-18 , which were named LPN-18N and LPB-18P, respectively. The result showed significant differences in fengycin yield between strain LPB -18N and LPB-18P. The production of fengycin was significantly enhanced in B. amyloliquefaciens LPB-18N, compared with that of the strain LPB-18 from 190.908 mg/L to 327.598 mg/L. Moreover, the production of fengycin decreased from 190.464 mg/L to 38.6 mg/L in B . amyloliquefaciens LPB-18P. A comparative transcriptome sequencing was carried out to better understand the complex regulatory mechanism. Transcription analysis revealed that 1037 genes were differentially expressed between B. amyloliquefaciens LPB-18 and B. amyloliquefaciens LPB-18N, including the key regulatory genes in fatty acid, amino acid biosynthesis, and central carbon metabolism, which could provide sufficient quantities of building precursors for fengycin biosynthesis. The biofilm formation and sporulation was also enhanced in the strain LPB-18N, which indicates that FenSr3 could play a vital role in stress resistance and promotes survival in B. amyloliquefaciens. Some sRNAs involved in stress response have been identified in the literature, but their regulatory roles in fengycin production remain unclear. The study will contribute a novel perspective to the regulation mechanism of biosynthesis and the optimization of key metabolites of B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Fenômenos Biológicos , Bacillus amyloliquefaciens/genética , RNA/metabolismo
19.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37096395

RESUMO

AIMS: Sub-therapeutic use of antibiotics as a growth promoter in animal diets has either been banned or voluntarily withdrawn from use in many countries to help curb the emergence of antibiotic-resistant pathogens. Probiotics may be an alternative to antibiotics as a growth promoter. We investigated the effects of a novel probiotic strain, Bacillus amyloliquefaciens H57 (H57) on the performance and microbiome-associated metabolic potential. METHODS AND RESULTS: Broiler chickens were fed either sorghum- or wheat-based diets supplemented with the probiotic H57. The growth rate, feed intake, and feed conversion in supplemented birds were compared with those in non-supplemented control. Caecal microbial metabolic functions were studied with shotgun metagenomic sequencing. H57 supplementation significantly increased the growth rate and daily feed intake of meat chickens relative to the non-supplemented controls without any effect on feed conversion ratio. In addition, relative to the non-supplemented controls, gene-centric metagenomics revealed that H57 significantly altered the functional capacity of the caecal microbiome, with amino acid and vitamin synthesis pathways being positively associated with H57 supplementation. CONCLUSIONS: Bacillus amyloliquefaciens H57 improves the performance of meat chickens or broilers and significantly modifies the functional potential of their caecal microbiomes, with enhanced potential capacity for amino acid and vitamin biosynthesis.


Assuntos
Bacillus amyloliquefaciens , Probióticos , Animais , Bacillus amyloliquefaciens/genética , Galinhas , Aminoácidos , Probióticos/farmacologia , Suplementos Nutricionais , Dieta/veterinária , Antibacterianos/farmacologia , Vitaminas , Carne/análise , Ração Animal/análise
20.
Funct Integr Genomics ; 23(2): 124, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055595

RESUMO

The aim of the present study was to evaluate the effects of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 on the expressions of spleen genes in weanling Jintang black goats. Bacillus amyloliquefaciens fsznc-06 (BA-treated group) and Bacillus pumilus fsznc-09 (BP-treated group) were directly fed to goats, and the spleens were harvested for transcriptome analysis. The KEGG pathway analysis showed that the differentially expressed genes (DEGs) in BA-treated vs CON group were mainly involved in digestive system and immune system, while those in BP-treated vs CON group were mainly involved in immune system, and those in BA-treated vs BP-treated group were mainly involved in digestive system. In conclusion, Bacillus amyloliquefaciens fsznc-06 might promote the expressions of genes related to immune system and digestive system, reduce the expressions of disease genes related to digestive system and might promote mutual accommodation of some immune genes in weanling black goat. Bacillus pumilus fsznc-09 might promote the expressions of genes related to immune system and mutual accommodation of some immune genes in weanling black goat. Bacillus amyloliquefaciens fsznc-06 has advantages over Bacillus pumilus fsznc-09 in promoting the expressions of genes related to digestive system and mutual accommodation of some immune genes.


Assuntos
Bacillus amyloliquefaciens , Bacillus pumilus , Animais , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Baço , Cabras/genética , Perfilação da Expressão Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA