Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Molecules ; 29(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39407675

RESUMO

To enhance the nutritional value of Acanthopanax senticosus leaves (AL), a fermentation process was conducted using a probiotic Bacillus mixture, and the changes in chemical constituents and biological activities before and after fermentation were compared. A response surface methodology was employed to optimize the liquid fermentation conditions of AL based on their influence on polyphenol content. Non-targeted metabolomics analysis was performed using LC-MS/MS to reveal the differing profiles of compounds before and after fermentation. The results indicated that Bacillus subtilis LK and Bacillus amyloliquefaciens M2 significantly influenced polyphenol content during fermentation. The optimal fermentation conditions were determined to be a fermentation time of 54 h, a temperature of 39.6 °C, and an inoculum size of 2.5% (v/v). In comparison to unfermented AL, the total polyphenol and flavonoid contents, as well as the free radical scavenging capacities measured by DPPH and ABTS assays, and the activities of ß-glucosidase and endo-glucanase, were significantly increased. The non-targeted metabolomics analysis identified 1348 metabolites, of which 829 were classified as differential metabolites. A correlation analysis between the differential metabolites of polyphenols, flavonoids, and antioxidant activity revealed that 13 differential metabolites were positively correlated with antioxidant activity. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the differential metabolites identified 82 pathways, with two of the top 25 metabolic pathways related to flavonoids. This study explores the potential for enhancing the active ingredients and biological effects of AL through probiotic fermentation using Bacillus strains.


Assuntos
Eleutherococcus , Fermentação , Metabolômica , Folhas de Planta , Polifenóis , Eleutherococcus/química , Eleutherococcus/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Metabolômica/métodos , Polifenóis/análise , Polifenóis/metabolismo , Bacillus subtilis/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Espectrometria de Massas em Tandem , Metaboloma , Extratos Vegetais/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/metabolismo , beta-Glucosidase/metabolismo
2.
Microb Cell Fact ; 23(1): 283, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420351

RESUMO

BACKGROUND: Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use. RESULT: The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca2+ alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese. CONCLUSIONS: The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.


Assuntos
Bacillus amyloliquefaciens , Queijo , Leite , Queijo/microbiologia , Animais , Leite/microbiologia , Leite/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Concentração de Íons de Hidrogênio , Células Imobilizadas/metabolismo , Temperatura
3.
BMC Microbiol ; 24(1): 317, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223475

RESUMO

BACKGROUND: Rusted root rot is one of the most common root diseases in Panax ginseng, and Cylindrocarpon destructans is one of the main pathogenic fungus. The objective of this study was to screen and explore the extracts of biocontrol bacteria isolated from ginseng rhizosphere soil against Cylindrocarpon destructans. RESULTS: Bacterial strains Bacillus amyloliquefaciens YY8 and Enterobacteriacea YY115 were isolated and found to exhibit in vitro antifungal activity against C. destructans. A combination of crude protein extract from B. amyloliquefaciens YY8 and ethyl acetate extract from Enterobacteriacea YY115 in a 6:4 ratio exhibited the strongest antifungal activity against C. destructans. Measurements of electrical conductivity, protein content, and nucleic acid content in suspension cultures of C. destructans treated with a mixture extracts indicated that the extracts disrupted the cell membranes of rusted root rot mycelia, resulting in the leakage of electrolytes, proteins, and nucleic acids from the cells, and ultimately inhibiting the growth of C. destructans. The combined extracts suppressed the infection of ginseng roots discs by C. destructans effectively. CONCLUSION: The extracts obtained from the two bacterial strains effectively inhibited C. destructans in P. ginseng. It can provide scientific basis for the development of new biological control pesticides, reduce the use of chemical pesticides, and promote the sustainable development of agriculture.


Assuntos
Bacillus amyloliquefaciens , Enterobacteriaceae , Panax , Doenças das Plantas , Raízes de Plantas , Panax/microbiologia , Panax/química , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbiologia do Solo , Rizosfera , Acetatos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia
4.
Curr Microbiol ; 81(10): 342, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225770

RESUMO

Exopolysaccharides (EPS) are natural macromolecular carbohydrates with good functional activity and physiological activities, which can be utilized as an emulsifier, viscosity enhancer, stabilizer, gelling agent, and water retention agent in a wide range of food products. In this study, the whole genome of Bacillus amyloliquefaciens D189, an EPS-producing bacteria, was sequenced. The result showed that D189 contains a single, circular chromosome of 3,963,356 bp with an average GC content of 45.74% and 3996 coding genes. The gene annotation results showed that D189 is a potentially safe strain and confirmed to be safe associated with hemolytic assay, and antibiotic resistance test. Meanwhile, D189 genome possessed 240 genes related to carbohydrate metabolism. More importantly, D189 could transport 9 sugars and contained a complete biosynthetic pathway for 8 nucleotide sugars. Based on the validation experiments, strain D189 could metabolize 8 sugars (glucose, sucrose, trehalose, fructose, cellobiose, maltose, mannitol, and N-acetyl-D-glucosamine) to produce EPS, with the highest yield of 1.212 g/L when sucrose was the carbon source. Therefore, the whole genome sequencing preliminarily elucidated the physiological mechanism of EPS, providing several pathways for engineering D189 to further enhance the yield of EPS.


Assuntos
Bacillus amyloliquefaciens , Genoma Bacteriano , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Sequenciamento Completo do Genoma , Composição de Bases , Fenótipo , Metabolismo dos Carboidratos
5.
Int J Food Microbiol ; 422: 110821, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38970998

RESUMO

Fusarium graminearum is a destructive fungal pathogen that seriously threatens wheat production and quality. In the management of fungal infections, biological control is an environmentally friendly and sustainable approach. Here, the antagonistic strain ZK-9 with a broad antifungal activity was identified as Bacillus amyloliquefaciens. ZK-9 could produce extracellular enzymes such as pectinase, protease, cellulase, and amylase, as well as plant growth-promoting substances including IAA and siderophore. Lipopeptides extracted from strain ZK-9 had the high inhibitory effects on the mycelia of F. graminearum with the minimum inhibitory concentration (MIC) of 0.8 mg/mL. Investigation on the action mechanism of lipopeptides showed they could change the morphology of mycelia, damage the cell membrane, lower the content of ergosterol and increase the relative conductivity of membrane, cause nucleic acid and proteins leaking out from the cells, and disrupt the cell membrane permeability. Furthermore, metabolomic analysis of F. graminearum revealed the significant differences in the expression of 100 metabolites between the lipopeptides treatment group and the control group, which were associated with various metabolic pathways, mainly including amino acid biosynthesis, pentose, glucuronate and glycerophospholipid metabolism. In addition, strain ZK-9 inhibited Fusarium crown rot (FCR) with a biocontrol efficacy of 82.14 % and increased the plant height and root length by 24.23 % and 93.25 %, respectively. Moreover, the field control efficacy of strain ZK-9 on Fusarium head blight (FHB) was 71.76 %, and the DON content in wheat grains was significantly reduced by 69.9 %. This study puts valuable insights into the antifungal mechanism of lipopeptides against F. graminearum, and provides a promising biocontrol agent for controlling F. graminearum.


Assuntos
Antifúngicos , Bacillus amyloliquefaciens , Fusarium , Lipopeptídeos , Testes de Sensibilidade Microbiana , Doenças das Plantas , Triticum , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Bacillus amyloliquefaciens/metabolismo , Lipopeptídeos/farmacologia , Antifúngicos/farmacologia , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos
6.
J Agric Food Chem ; 72(29): 16412-16422, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982640

RESUMO

Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in Bacillus amyloliquefaciens to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively. Meanwhile, the hemA gene was confirmed to be the key gene for enhanced heme synthesis. Various hemA genes were compared to obtain the best gene dhemA, and the catalysis mechanism was explained by molecular docking simulation. After further expression of dhemA in HZC9nΔGPSU, the heme titer of HZC9nΔGPSU/pHY-dhemA reached 11.31 ± 0.51 mg/L, 1.70-fold higher than that of HZC9n/pHY-dhemA. The knockout of off-odor-related genes reduced the odor substances and enhanced the heme synthesis, which is promising for the green production of high-quality heme.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Sistemas CRISPR-Cas , Heme , Odorantes , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Odorantes/análise , Heme/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Deleção de Genes , Simulação de Acoplamento Molecular , Fermentação
7.
J Agric Food Chem ; 72(28): 15841-15853, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957116

RESUMO

Aflatoxin B1 (AFB1), a mycotoxin and natural carcinogen, commonly contaminates cereals and animal feeds, posing serious health risks to human and animal. In this study, Bacillus amyloliquefaciens ZG08 isolated from kimchi could effectively remove 80.93% of AFB1 within 72 h at 37 °C and pH 7.0. Metabolome and transcriptome analysis showed that metabolic processes including glycerophospholipid metabolism and amino acid metabolism were most affected in B. amyloliquefaciens ZG08 exposed to AFB1. The adaptation mechanism likely involved activation of the thioredoxin system to restore intracellular redox equilibrium. The key genes, tpx and gldA, overexpressed in Escherichia coli BL21, achieved degradation rates of 60.15% and 47.16% for 100 µg/kg AFB1 under optimal conditions of 37 °C and pH 8.0 and 45 °C and pH 7.0, respectively. The degradation products, identified as AFD1, were less cytotoxic than AFB1 in HepG2 cells. These findings suggest potential strategies for utilizing probiotics and engineered enzymes in AFB1 detoxification.


Assuntos
Aflatoxina B1 , Bacillus amyloliquefaciens , Proteínas de Bactérias , Biodegradação Ambiental , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/química , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Células Hep G2 , Alimentos Fermentados/microbiologia , Multiômica
8.
J Hazard Mater ; 476: 135084, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991649

RESUMO

In the present investigation, we utilized zinc nanoparticles (Zn-NPs) and bacterial endophytes to address the dual challenge of heavy metal (HM) toxicity in soil and Rhizoctonia solani causing root rot disease of tomato. The biocontrol potential of Bacillus subtilis and Bacillus amyloliquefaciens was harnessed, resulting in profound inhibition of R. solani mycelial growth and efficient detoxification of HM through strong production of various hydrolytic enzymes and metabolites. Surprisingly, Zn-NPs exhibited notable efficacy in suppressing mycelial growth and enhancing the seed germination (%) while Gas chromatography-mass spectrometry (GC-MS) analysis unveiled key volatile compounds (VOCs) crucial for the inhibition of pathogen. Greenhouse trials underscored significant reduction in the disease severity (%) and augmented biomass in biocontrol-mediated plants by improving photosynthesis-related attributes. Interestingly, Zn-NPs and biocontrol treatments enhanced the antioxidant enzymes and mitigate oxidative stress indicator by increasing H2O2 concentration. Field experiments corroborated these findings, with biocontrol-treated plants, particularly those receiving consortia-mediated treatments, displayed significant reduction in disease severity (%) and enhanced the fruit yield under field conditions. Root analysis confirmed the effective detoxification of HM, highlighting the eco-friendly potential of these endophytes and Zn-NPs as fungicide alternative for sustainable production that foster soil structure, biodiversity and promote plant health.


Assuntos
Endófitos , Fotossíntese , Doenças das Plantas , Rhizoctonia , Solanum lycopersicum , Fotossíntese/efeitos dos fármacos , Endófitos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Zinco/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus subtilis/metabolismo , Nanopartículas Metálicas/química , Oligoelementos/metabolismo , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
9.
Curr Microbiol ; 81(8): 228, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890167

RESUMO

Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.


Assuntos
Bacillus amyloliquefaciens , Lactuca , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Microbiota , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química
10.
Food Chem ; 455: 139779, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833859

RESUMO

This study investigated the production of antioxidant peptides from Porphyra yezoensis through fermentation with three strains of microorganisms: Lactiplantibacillus plantarum L13, Bacillus amyloliquefaciens MMB-02, and Saccharomyces cerevisiae A8. The crude peptides were extracted by aqueous acid precipitation and purified by Sephadex G-25 gel column to produce highly active antioxidant components with molecular weight of <4000 Da. The LC-MS/MS result revealed that the fermentation group contained more hydrophobic amino acids and oligopeptides, which were mainly originated from phycobiliproteins and algal blue proteins. Finally, the antioxidant activity of Porphyra yezoensis was determined with DPPH· and ABTS· scavenging rates of 54.87% and 57.39%, respectively. The ferric ion-reducing power (FRAP) and enzyme activities of SOD and CAT were significantly higher than those of the control group. This study provides a scientific foundation for the deep processing of striped seaweed and contributes to the theoretical understanding of synthetic antioxidant substitutes.


Assuntos
Antioxidantes , Fermentação , Peptídeos , Porphyra , Porphyra/química , Porphyra/metabolismo , Porphyra/microbiologia , Antioxidantes/química , Antioxidantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Algas Comestíveis
11.
J Agric Food Chem ; 72(20): 11577-11586, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721818

RESUMO

Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Engenharia Metabólica , Monoéster Fosfórico Hidrolases , Plasmídeos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Técnicas de Inativação de Genes
12.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755297

RESUMO

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Assuntos
Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Obesidade , Animais , Camundongos , Ratos , Células 3T3-L1/metabolismo , Células 3T3-L1/microbiologia , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Anticolesterolemiantes/farmacologia , Bacillus amyloliquefaciens/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/microbiologia , Ratos Wistar , RNA Ribossômico 16S/genética
13.
Food Res Int ; 183: 114202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760133

RESUMO

Pixian broad bean paste is a renowned fermented seasoning. The fermentation of broad bean is the most important process of Pixian broad bean paste. To enhance the flavor of tank-fermented broad bean paste, salt-tolerant Bacillus amyloliquefaciens strain was inoculated, resulting in an increase in total amount of volatile compounds, potentially leading to different flavor characteristics. To investigate the fermentation mechanism, monoculture simulated fermentation systems were designed. Metabolomics and transcriptomics were used to explore Bacillus amyloliquefaciens' transcriptional response to salt stress and potential aroma production mechanisms. The results highlighted different metabolite profiles under salt stress, and the crucial roles of energy metabolism, amino acid metabolism, reaction system, transportation system in Bacillus amyloliquefaciens' hypersaline stress response. This study provides a scientific basis for the industrial application of Bacillus amyloliquefaciens and new insights into addressing the challenges of poor flavor quality in tank fermentation products.


Assuntos
Bacillus amyloliquefaciens , Fermentação , Metabolômica , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Transcriptoma , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Perfilação da Expressão Gênica , Paladar , Fabaceae/microbiologia
14.
Int J Biol Macromol ; 269(Pt 2): 132166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723822

RESUMO

Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Endopeptidases , Proteínas de Fluorescência Verde , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Endopeptidases/metabolismo , Endopeptidases/genética , Endopeptidases/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Simulação de Acoplamento Molecular , Sinais Direcionadores de Proteínas , Proteínas de Membrana , Serina Endopeptidases , Proteínas de Membrana Transportadoras
15.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
16.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710854

RESUMO

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Assuntos
Antioxidantes , Bacillus amyloliquefaciens , Aves , Fermentação , Probióticos , Solubilidade , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Animais , Probióticos/química , Probióticos/metabolismo , Aves/microbiologia
17.
Waste Manag ; 181: 89-100, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38598883

RESUMO

High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.


Assuntos
Bacillus amyloliquefaciens , Lipopeptídeos , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Lipopeptídeos/metabolismo , Tolerância ao Sal , Água do Mar/microbiologia , Alimentos , Perda e Desperdício de Alimentos
18.
Appl Microbiol Biotechnol ; 108(1): 311, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676716

RESUMO

As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.


Assuntos
Bacillus amyloliquefaciens , Engenharia Metabólica , Tensoativos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Engenharia Metabólica/métodos , Tensoativos/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Regiões Promotoras Genéticas , Ligases/genética , Ligases/metabolismo
19.
Food Chem ; 450: 139327, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636380

RESUMO

Branched-chain amino acids (BCAAs) are vital components of human and animal nutrition that contribute to the building blocks of proteins. In this study, 170 protease-producing strains were isolated and screened from soy-fermented foods. Bacillus amyloliquefaciens NY130 was obtained from Cheonggukjang with high production of BCAAs. Optimal production of protease from B. amyloliquefaciens NY130 (protease NY130) was achieved at 42 °C and pH 6.0 for 21 h. It was purified and determined as 27- and 40 kDa. Protease NY130 showed maximum activity at pH 9.0 and 45 °C with Km value of 10.95 mg for ISP and 1.69 mg for WPI. Protease-treated ISP and WPI showed increased sweetness and saltiness via electronic tongue analysis and enhanced the protective effect against oxidative stress in C2C12 myocytes by increasing p-mTOR/mTOR protein expression to 160%. This work possesses potential in producing BCAAs by using protease for utilization in food.


Assuntos
Aminoácidos de Cadeia Ramificada , Bacillus amyloliquefaciens , Peptídeo Hidrolases , Proteínas de Soja , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/química , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fermentação
20.
J Agric Food Chem ; 72(12): 6096-6109, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484112

RESUMO

Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 µg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.


Assuntos
Bacillus amyloliquefaciens , Lipopolissacarídeos , Humanos , Masculino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Bacillus amyloliquefaciens/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Inflamação/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA