Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Food Res Int ; 192: 114834, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147521

RESUMO

Bacillus cereus is a well-known foodborne pathogen that can cause human diseases, including vomiting caused by emetic toxin, cereulide, requiring 105-108 cells per gram to cause the disease. The bacterial cells may be eliminated during processing, but cereulide can survive in most processing techniques due to its resistance to high temperatures, extreme pH and proteolytic enzymes. Herein, we reported dynamic processes of biofilm formation of four different types and cereulide production within the biofilm. Confocal laser scanning microscopy (CLSM) images revealed that biofilms of the four different types reach each stage at different time points. Among the extracellular polymeric substances (EPS) components of the four biofilms formed by the emetic B. cereus F4810/72 strain, proteins account for the majority. In addition, there are significant differences (p < 0.05) in the EPS components at the same stage among biofilms of different types. The time point at which cereulide was first detected in the four types of biofilms was 24 h. In the biofilm of B. cereus formed in ultra-high-temperature (UHT) milk, the first peak of cereulide appeared at 72 h. The cereulide content of the biofilms formed in BHI was mostly higher than that of the biofilms formed in UHT milk. This study contributes to a better understanding of food safety issues in the industry caused by biofilm and cereulide toxin produced by B. cereus.


Assuntos
Bacillus cereus , Biofilmes , Depsipeptídeos , Microbiologia de Alimentos , Bacillus cereus/metabolismo , Bacillus cereus/fisiologia , Biofilmes/crescimento & desenvolvimento , Depsipeptídeos/metabolismo , Microscopia Confocal , Animais , Leite/microbiologia , Temperatura Alta , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Manipulação de Alimentos/métodos
2.
Food Res Int ; 193: 114861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160048

RESUMO

Cold plasma (CP) technology is a promising alternative to thermal treatments for the microbial decontamination of foods with low-water activity. The aim of this work is study the application of low-pressure CP (0.35 mbar) for the inactivation of Bacillus cereus in a soybean powder matrix using O2 and synthetic air as ionizing gases. The parameters tested were an input power of 100, 200 and 300 W and an exposure time of 10 to 30 min. The excited reactive species formed were monitored by optical emission spectroscopy, and survival data were analyzed using the Weibull mathematical model. Treatments with both gases were effective in inactivating B. cereus. Air plasma resulted in a maximum 3.71-log reduction in bacterial counts at 300 W and 30 min, while O2 plasma showed the strongest inactivation ability, achieving levels higher than 5 log cycles at 300 W and > 25 min. This is likely due to the strong antimicrobial activity of oxygen-derived radicals together with carbon monoxide as an oxidation by-product. In addition, the Weibull distribution function accurately modeled the inactivation of B. cereus. Cold plasma technology is a promising approach for the decontamination of bacteria in low-water activity foods.


Assuntos
Bacillus cereus , Microbiologia de Alimentos , Glycine max , Viabilidade Microbiana , Oxigênio , Gases em Plasma , Água , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Água/química , Glycine max/microbiologia , Glycine max/química , Microbiologia de Alimentos/métodos , Pós , Ar , Contagem de Colônia Microbiana
3.
Sci Rep ; 14(1): 19304, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164280

RESUMO

First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.


Assuntos
Alumínio , Antibacterianos , Antineoplásicos , Cobre , Escherichia coli , Níquel , Sulfetos , Compostos de Zinco , Humanos , Níquel/química , Antibacterianos/farmacologia , Antibacterianos/química , Sulfetos/química , Sulfetos/farmacologia , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Alumínio/química , Compostos de Zinco/química , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química
4.
Anal Chim Acta ; 1320: 343034, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142776

RESUMO

BACKGROUND: Bacillus cereus (B. cereus) is a widespread conditional pathogen that affects food safety and human health. Conventional methods such as bacteria culture and polymerase chain reaction (PCR) are difficult to use for rapid identification of bacterial spores because of the relatively long analysis times. From a human health perspective, there is an urgent need to develop an ultrasensitive, rapid, and accurate method for the detection of B. cereus spores. RESULTS: The study proposed a new method for rapidly and sensitively detecting the biomarkers of bacterial spores via surface-enhanced Raman spectroscopy (SERS) combined with electrochemical enrichment. The 2,6-Pyridinedicarboxylic acid (DPA) was used as the model analyte to acts as a biomarker of B. cereus spores. The SERS substrate was developed via the in-situ generation of Ag nanoparticles (AgNPs) in a cuttlebone-derived organic matrix (CDOM). Because of the depletion of chitin reduction sites on the CDOM, the pores of the porous channels expanded. The pores diameter of the AgNPs/CDOM porous channel was found to be in the range of 0.7-1.3 nm through molecular diffusion experiments. Based on the porosity of AgNPs/CDOM substrates and the high sensitivity of SERS substrates, the sensor can rapidly and accurately electronically enrich DPA in 40 s with the limit of detection (LOD) of 0.3 nM. SIGNIFICANCE: The results demonstrate that electrochemically assisted SERS substrates can be served as a high sensitivity electrochemical-enrichment device for the rapid and sensitive detection of bacterial spores with minimal interference from potentially coexisting species in biological samples. In this study, it opens up a platform to explore the application of porous channels in natural bio-derived materials in the field of food safety.


Assuntos
Bacillus cereus , Biomarcadores , Prata , Análise Espectral Raman , Esporos Bacterianos , Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Análise Espectral Raman/métodos , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/química , Prata/química , Porosidade , Biomarcadores/análise , Nanopartículas Metálicas/química , Ácidos Picolínicos/análise , Ácidos Picolínicos/química , Limite de Detecção , Propriedades de Superfície
5.
BMC Plant Biol ; 24(1): 647, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977968

RESUMO

BACKGROUND: The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS: The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION: The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.


Assuntos
Ginsenosídeos , Paenibacillus polymyxa , Panax , Doenças das Plantas , Rizosfera , Panax/microbiologia , Panax/crescimento & desenvolvimento , Panax/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Microbiologia do Solo , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Microbiota/efeitos dos fármacos
6.
BMC Microbiol ; 24(1): 252, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982378

RESUMO

The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.


Assuntos
Biodegradação Ambiental , Fenol , Poluentes Químicos da Água , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Purificação da Água/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Biofilmes/crescimento & desenvolvimento , Armoracia/metabolismo , Esgotos/microbiologia , Bacillus cereus/metabolismo , Bacillus cereus/isolamento & purificação , Bacillus cereus/enzimologia
7.
J Agric Food Chem ; 72(28): 16010-16017, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965162

RESUMO

Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.


Assuntos
Antibacterianos , Galinhas , Reação de Maillard , Fenilalanina , Prolina , Salmonella typhimurium , Xilose , Antibacterianos/farmacologia , Antibacterianos/química , Prolina/química , Fenilalanina/química , Xilose/química , Salmonella typhimurium/efeitos dos fármacos , Animais , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão
8.
Food Res Int ; 191: 114685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059942

RESUMO

This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.


Assuntos
Antibacterianos , Bacillus cereus , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , Nisina , Antibacterianos/farmacologia , Bacillus cereus/virologia , Bacillus cereus/efeitos dos fármacos , Fagos Bacilares/genética , Bacteriófagos , Queijo/microbiologia , Concentração de Íons de Hidrogênio , Leite/microbiologia , Nisina/farmacologia , Oryza/microbiologia , Temperatura
9.
Food Res Int ; 191: 114692, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059950

RESUMO

Bacillus cereus and Bacillus thuringiensis, which belong to the B. cereus group, are widely distributed in nature and can cause food poisoning symptoms. In this study, we collected 131 isolates belonging to the B. cereus group, comprising 124B. cereus and seven B. thuringiensis isolates, from fresh-cut lettuce production chain and investigated their potential risk by analyzing genotypic (enterotoxin and emetic toxin gene profiles) and phenotypic (antibiotic susceptibility, sporulation, and biofilm formation) characteristics. Enterotoxin genes were present only in B. cereus, whereas the emetic toxin gene was not detected in any of the B. cereus isolates. All isolates were susceptible to vancomycin, which is a last resort for treating B. cereus group infection symptoms, but generally resistant to ß-lactam antimicrobials, and had the ability to form spores (at an average sporulation rate of 24.6 %) and biofilms at 30 °C. Isolates that formed strong biofilms at 30 °C had a superior possibility of forming a dense biofilm by proliferating at 10 °C compared to other isolates. Additionally, confocal laser scanning microscopy (CLSM) images revealed a notable presence of spores within the submerged biofilm formed at 10 °C, and the strengthened attachment of biofilm inner cells to the substrate was further revealed through biofilm structure parameters analysis. Collectively, our study revealed the prevalence and contamination levels of B. cereus and B. thuringiensis at fresh-cut lettuce production chain and investigated their genotypic and phenotypic characteristics, aiming to provide valuable insights for the development of potential risk management strategies to ensure food safety, especially along the cold chain.


Assuntos
Bacillus cereus , Biofilmes , Enterotoxinas , Microbiologia de Alimentos , Lactuca , Lactuca/microbiologia , Biofilmes/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus cereus/isolamento & purificação , Bacillus cereus/fisiologia , Enterotoxinas/genética , Enterotoxinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/fisiologia , Esporos Bacterianos/genética , Antibacterianos/farmacologia , Contaminação de Alimentos/análise , Testes de Sensibilidade Microbiana , Doenças Transmitidas por Alimentos/microbiologia , Genótipo
10.
Environ Sci Pollut Res Int ; 31(36): 48972-48985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39042195

RESUMO

The bioreduction characteristics and mechanisms of Cr(VI) onto Bacillus cereus RCr enhanced by ferric citrate were investigated. The optimum conditions were initial pH 9, temperature 40 °C, inoculation amount 4%, and glucose 3 g/L, respectively. The addition of 1.5 g/L ferric citrate increased the average reduction rate from 120.43 to 220.61 mg/(L∙h) compared with the control (without ferric citrate). The binding capacity of Cr(III) on the cell surface increased to 21%, in which the precipitates were mainly CrO(OH), Cr2O3, and FeCr2O4. Cell membrane was the main site of reduction, related important functional groups: - COOH, C-H, - NH2, C = C, and P-O. Fe(III) increased the yield of NADH and cytochrome c by approximately 48.51% and 68.63%, which significantly facilitated the electron generation and electron transfer, thus increasing the amount of electrons in the bioreduction of heavy metals by an average of 110%. Among the electrons obtained by Cr(VI), the proportion of indirect reduction mediated by Fe(III)/Fe(II) shuttle was 62% on average, whereas direct reduction mediated by reductase was 38%. These results may provide insights into the bioreduction process by bacteria enhanced by Fe(III) for detoxification of heavy metals with multiple valences, as an important step towards improving microbial remediation.


Assuntos
Bacillus cereus , Cromo , Compostos Férricos , Oxirredução , Bacillus cereus/metabolismo , Compostos Férricos/metabolismo , Cromo/metabolismo , Biodegradação Ambiental
11.
Mol Microbiol ; 122(2): 255-270, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030901

RESUMO

The flagellar MS-ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram-positive and peritrichously flagellated Bacillus cereus. We demonstrate that fliF forms an operon with the upstream gene fliE. In silico analysis of B. cereus ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a ΔfliF mutant of B. cereus, constructed in this study using an in frame markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by fliF deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of B. cereus to adhere to gastrointestinal mucins. We additionally show that the fliF deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of B. cereus FliF in flagella-related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Biofilmes , Flagelos , Óperon , Bacillus cereus/metabolismo , Bacillus cereus/genética , Flagelos/metabolismo , Flagelos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Aderência Bacteriana , Regulação Bacteriana da Expressão Gênica , Deleção de Genes , Proteínas de Membrana
13.
Chemosphere ; 363: 142823, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996978

RESUMO

Struvite biomineralization is an ecologically sound technology, adept at the efficient recovery and recycling of phosphorus from wastewater. However, the biomineralization process is often perturbed by the presence of antibiotics, notably tetracycline (TC), the impact of which on the biomineralization system has not been elucidated. This study examines the efficacy of Bacillus cereus LB-9 in struvite biomineralization, focusing on the precipitates' composition, morphology, and TC content. LB-9 facilitate an alkaline environment that effectively recovering nitrogen and phosphorus. These findings indicate that TC retards the initial formation of struvite and the concurrent recovery of nitrogen and phosphorus. However, at concentrations below 10 mg/L TC concentrations, TC enhanced struvite production (0.38g) by stimulating LB-9's growth and metabolic activity. Conversely, at a concentration of 10 mg/L TC, the strain's activity was markedly suppressed within the initial four days. This data suggests that TC promotes the strain's proliferation and metabolism, potentially through cellular secretions, thereby augmenting phosphorus recovery from wastewater. Notably, the recovered struvite doesn't contain TC, aligning with regulatory standards for agricultural application. In summary, LB-9-mediated struvite recovery is an effective strategy for producing phosphorus-enriched fertilizers and mitigating TC contamination, offering significant implications for wastewater treatment and industrial process development, particularly in the context of prevalent TC in wastewater.


Assuntos
Bacillus cereus , Fósforo , Estruvita , Tetraciclina , Águas Residuárias , Fósforo/metabolismo , Águas Residuárias/química , Bacillus cereus/metabolismo , Estruvita/química , Biomineralização , Antibacterianos , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Fertilizantes
14.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985570

RESUMO

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Assuntos
Monoterpenos Acíclicos , Bacillus cereus , Biofilmes , Monoterpenos Acíclicos/farmacologia , Anti-Infecciosos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Potenciais da Membrana/efeitos dos fármacos , Espaço Intracelular/enzimologia , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Varredura , Microbiologia de Alimentos
15.
Ann Clin Microbiol Antimicrob ; 23(1): 66, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061043

RESUMO

Bacillus cereus is a bacterium capable of causing late-onset neonatal sepsis. By analyzing 11 cases, this study investigates the diagnosis, treatment, and prognosis of Bacillus cereus infections, aiming to provide insights into clinical diagnosis and therapy. The study scrutinized 11 instances of late-onset neonatal sepsis, including two fatalities attributable to Bacillus cereus, one accompanied by cerebral hemorrhage. An examination and analysis of these cases' symptoms, signs, laboratory tests, and treatment processes, along with a review of related literature from 2010 to 2020, revealed a high mortality rate of 41.38% in non-gastrointestinal infections caused by Bacillus cereus. Our findings underscore the critical importance of rapid diagnosis and effective antimicrobial therapy in reducing mortality rates. Once the source of infection is identified, implementing effective infection control measures is essential.


Assuntos
Antibacterianos , Bacillus cereus , Infecções por Bactérias Gram-Positivas , Sepse Neonatal , Humanos , Recém-Nascido , Antibacterianos/uso terapêutico , Bacillus cereus/isolamento & purificação , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/diagnóstico
16.
Sci Rep ; 14(1): 16590, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025896

RESUMO

Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.


Assuntos
Antifúngicos , Artemia , Antifúngicos/farmacologia , Antifúngicos/química , Animais , Humanos , Artemia/efeitos dos fármacos , Células Hep G2 , Bacillus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/toxicidade , Metabolismo Secundário , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/metabolismo , Testes de Sensibilidade Microbiana
17.
J Agric Food Chem ; 72(27): 15228-15236, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935872

RESUMO

A new fusicoccane diterpenoid, harziaderma A (1), two novel harziane diterpenoids, harzianones G and H (2 and 3), one revised harziane diterpenoid (4), and two known diterpenoids (5 and 6) were isolated from the fungus Trichoderma harzianum and established via NMR, HRESIMS, Mo2(OAc)4-induced circular dichroism (ICD) and electronic circular dichroism (ECD) calculations. It is worth noting that compound 1 represents the first instance of a fusicoccane-type diterpenoid derived from T. harzianum. The structure of furanharzianone B was revised to 4 via careful spectroscopic analyses. Additionally, compounds 2 and 5 could suppress the overall growth of the foodborne bacterial pathogen Bacillus cereus. Compound 4 showed a moderate suppressive impact on NO generation in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The discoveries from the current study not only expanded the structural variety of diterpenoids isolated from T. harzianum but also laid a robust foundation for the development of harziane diterpenoids as anti-foodborne pathogen agents.


Assuntos
Antibacterianos , Diterpenos , Diterpenos/farmacologia , Diterpenos/química , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Células RAW 264.7 , Estrutura Molecular , Bacillus cereus/efeitos dos fármacos , Hypocreales/química
18.
J Microbiol Methods ; 223: 106978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936432

RESUMO

This study aimed to compare the performance of flow cytometry methods with plate counting for the enumeration of bacteria, using Bacillus cereus as a model organism. It was found that the cFDA-propidium iodide, CellROX™ Green-propidium iodide, and DiOC2 dye techniques had similar accuracy to plate counting, while the SYTO 24-propidium iodide dye technique was not as accurate. The four dye techniques had comparable precision to plate counting, with the CellROX™ Green-propidium iodide dye having the greatest precision. The consistency of the position and shape of the cell clusters on the flow cytometry plots, and the extent of separation of the cell from background clusters, was greatest with the DiOC2 and CellROX™ Green-propidium iodide dyes. Furthermore, the DiOC2 and CellROX™ Green-propidium iodide dyes performed well, even when a sample was measured containing reconstituted whole milk powder at a 10-1 dilution, without the use of sample preparation to specifically remove the milk constituents prior to measurement. Given gating of only one cell cluster was required to be managed with the DiOC2 dye, to determine the viable number of cells, it was found that the DiOC2 dye had the greatest ease-of-use. Overall, results indicated that the DiOC2 dye is an ideal candidate for the enumeration of viable bacteria in dairy samples on a high-throughput, routine basis.


Assuntos
Bacillus cereus , Citometria de Fluxo , Corantes Fluorescentes , Leite , Bacillus cereus/isolamento & purificação , Bacillus cereus/crescimento & desenvolvimento , Leite/microbiologia , Citometria de Fluxo/métodos , Animais , Corantes Fluorescentes/química , Contagem de Colônia Microbiana/métodos , Carga Bacteriana/métodos , Propídio/química , Coloração e Rotulagem/métodos
19.
Talanta ; 277: 126351, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850802

RESUMO

Multiplex, sensitive, and rapid detection of pathogens is crucial for ensuring food safety and safeguarding human health, however, it remains a significant challenge. This study proposes a concanavalin A-assisted multiplex digital amplification (CAMDA) assay for simultaneous quantitative detection of multiple foodborne bacteria. The CAMDA assay enables the simultaneous detection of six foodborne pathogens within 1.1 h and the limit of detection is 101 CFU/mL. Furthermore, the CAMDA assay exhibits high specificity, with a rate of 97 % for Bacillus cereus and 100 % for other pathogens tested in this study. Moreover, practical application validation using eight milk powder samples demonstrates that the accuracy of the CAMDA assay reaches 100 % when compared to qPCR results. Therefore, our developed CAMDA assay holds great potential for accurate and rapid detection of multiple pathogens in complex food matrices while also promoting the utilization of microfluidic chips in food investigation.


Assuntos
Concanavalina A , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Microbiologia de Alimentos/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Leite/microbiologia , Animais , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Limite de Detecção
20.
Sci Rep ; 14(1): 14645, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918548

RESUMO

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Assuntos
Produtos Agrícolas , Tolerância ao Sal , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus/fisiologia , Bacillus/metabolismo , Endófitos/fisiologia , Salinidade , Ácidos Indolacéticos/metabolismo , Microbiologia do Solo , Fixação de Nitrogênio , Germinação , Bacillus cereus/fisiologia , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/isolamento & purificação , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Carbono-Carbono Liases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA