Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Braz. j. biol ; 82: 1-6, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468537

RESUMO

The effects of Calcium (Ca+²) on virulence and some parameters should be analyzed in this study. Pseudomonas aeruginosa Gram (-) and Bacillus cereus Gram (+) were used. Both bacteria are soil bacteria. In this study; the effect of Ca+² on protease, amylase, LasB elastolytic assay, H2O2, pyorubin and biofilm on metabolites of these bacteria were investigated during 24 hour time. In this study, the effect of Ca+² on the production of some secondary metabolites on P. aeruginosa and B. cereus was investigated and presented for the first time by us.


Os efeitos do cálcio (Ca+²) na virulência e alguns parâmetros devem ser analisados neste estudo. Pseudomonas aeruginosa Gram (-) e Bacillus cereus Gram (+) foram usados. Ambas as bactérias são bactérias do solo. Neste estudo, o efeito do Ca+² sobre a protease, amilase, ensaio elastolítico LasB, H2O2, piorubina e biofilme nos metabólitos dessas bactérias foram investigados durante 24 horas. Neste estudo, o efeito do Ca+² na produção de alguns metabólitos secundários em P. aeruginosa e B. cereus foi investigado e apresentado pela primeira vez por nós.


Assuntos
Bacillus cereus/enzimologia , Bacillus cereus/química , Bacillus cereus/virologia , Cálcio/análise , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/virologia
2.
Arch Virol ; 166(11): 3183-3188, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34505918

RESUMO

A new Bacillus cereus phage, SWEP1, was isolated from black soil. The host lysis activity of phage SWEP1 has a relatively short latent time (20 min) and a small burst size of 83 PFU. The genome of SWEP1 consists of 162,461 bp with 37.77% G+C content. The phage encodes 278 predicted proteins, 103 of which were assigned functionally. No tRNA genes were found. Comparative genomics analysis indicated that SWEP1 is related to Bacillus phage B4 (86.91% identity, 90% query coverage). Phenotypic and genotypic characterization suggested that SWEP1 is a new member of a new species in the genus Bequatrovirus, family Herelleviridae.


Assuntos
Fagos Bacilares/fisiologia , Bacillus cereus/virologia , Genoma Viral , Fagos Bacilares/genética , Fagos Bacilares/isolamento & purificação , Bacillus cereus/isolamento & purificação , Composição de Bases , Replicação do DNA/genética , Genômica , Genótipo , Microscopia Eletrônica de Transmissão , Filogenia , RNA de Transferência/genética , Microbiologia do Solo , Temperatura
3.
Biomol Concepts ; 12(1): 85-93, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34218551

RESUMO

Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


Assuntos
Fagos Bacilares/isolamento & purificação , Bacillus cereus/virologia , Fermentação , Glycine max/química , Myoviridae/isolamento & purificação , Fagos Bacilares/fisiologia , Microbiologia de Alimentos , Humanos , Myoviridae/classificação , Myoviridae/genética , Myoviridae/crescimento & desenvolvimento , Tailândia
4.
Sci Rep ; 11(1): 12173, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108535

RESUMO

One of the serious public health concerns is food contaminated with pathogens and their vital activity products such as toxins. Bacillus cereus group of bacteria includes well-known pathogenic species such as B. anthracis, B. cereus sensu stricto (ss), B. cytotoxicus and B. thuringiensis. In this report, we describe the Bacillus phages vB_BcM_Sam46 and vB_BcM_Sam112 infecting species of this group. Electron microscopic analyses indicated that phages Sam46 and Sam112 have the myovirus morphotype. The genomes of Sam46 and Sam112 comprise double-stranded DNA of 45,419 bp and 45,037 bp in length, respectively, and have the same GC-content. The genome identity of Sam46 and Sam112 is 96.0%, indicating that they belong to the same phage species. According to the phylogenetic analysis, these phages form a distinct clade and may be members of a new phage genus, for which we propose the name 'Samaravirus'. In addition, an interesting feature of the Sam46 and Sam112 phages is the unusual structure of their small terminase subunit containing N-terminal FtsK_gamma domain.


Assuntos
Fagos Bacilares/genética , Bacillus anthracis/virologia , Bacillus cereus/virologia , Bacillus thuringiensis/virologia , Endodesoxirribonucleases/química , Genoma Viral , Sequência de Aminoácidos , Fagos Bacilares/classificação , Fagos Bacilares/enzimologia , Fagos Bacilares/isolamento & purificação , Bacillus anthracis/crescimento & desenvolvimento , Bacillus cereus/crescimento & desenvolvimento , Bacillus thuringiensis/crescimento & desenvolvimento , Composição de Bases , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Filogenia , Homologia de Sequência , Ensaio de Placa Viral
5.
Appl Environ Microbiol ; 87(15): e0046821, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34020940

RESUMO

The common cooccurrence of antibiotics and phages in both natural and engineered environments underscores the need to understand their interactions and implications for bacterial control and antibiotic resistance propagation. Here, aminoglycoside antibiotics that inhibit protein synthesis (e.g., kanamycin and neomycin) impeded the replication of coliphage T3 and Bacillus phage BSP, reducing their infection efficiency and mitigating their hindrance of bacterial growth, biofilm formation, and tolerance to antibiotics. For example, treatment with phage T3 reduced subsequent biofilm formation by Escherichia coli liquid cultures to 53% ± 5% of that of the no-phage control, but a smaller reduction of biofilm formation (89% ± 10%) was observed for combined exposure to phage T3 and kanamycin. Despite sharing a similar mode of action with aminoglycosides (i.e., inhibiting protein synthesis) and antagonizing phage replication, albeit to a lesser degree, tetracyclines did not inhibit bacterial control by phages. Phage T3 combined with tetracycline showed higher suppression of biofilm formation than when combined with aminoglycosides (25% ± 6% of the no-phage control). The addition of phage T3 to E. coli suspensions with tetracycline also suppressed the development of tolerance to tetracycline. However, this suppression of antibiotic tolerance development disappeared when tetracycline was replaced with 3 mg/liter kanamycin, corroborating the greater antagonism with aminoglycosides. Overall, this study highlights this overlooked antagonistic effect on phage proliferation, which may attenuate phage suppression of bacterial growth, biofilm formation, antibiotic tolerance, and maintenance of antibiotic resistance genes. IMPORTANCE The coexistence of residual antibiotics and phages is common in many environments, which underscores the need to understand their interactive effects on bacteria and the implications for antibiotic resistance propagation. Here, aminoglycosides acting as bacterial protein synthesis inhibitors impeded the replication of various phages. This alleviated the suppressive effects of phages against bacterial growth and biofilm formation and diminished bacterial fitness costs that suppress the emergence of tolerance to antibiotics. We show that changes in bacteria caused by environmentally relevant concentrations of sublethal antibiotics can affect phage-host dynamics that are commonly overlooked in vitro but can result in unexpected environmental consequences.


Assuntos
Antibacterianos/farmacologia , Fagos Bacilares/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Bacteriófago T3/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Canamicina/farmacologia , Neomicina/farmacologia , Fagos Bacilares/crescimento & desenvolvimento , Bacillus cereus/fisiologia , Bacillus cereus/virologia , Bacteriófago T3/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/virologia , Tetraciclina/farmacologia
6.
PLoS One ; 15(11): e0242657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232350

RESUMO

Several bacterial species belonging to the Bacillus cereus group are known to be causative agents of food poisoning and severe human diseases. Bacteriophages and their lytic enzymes called endolysins have been widely shown to provide for a supplemental or primary means of treating bacterial infections. In this work we present a new broad-host-range phage Izhevsk, which infects the members of the Bacillus cereus group. Transmission electron microscopy, genome sequencing and comparative analyses revealed that Izhevsk is a temperate phage with Siphoviridae morphology and belongs to the same genus as the previously described but taxonomically unclassified bacteriophages Tsamsa and Diildio. The Ply57 endolysin of Izhevsk phage has broad-spectrum activity against B. cereus sensu lato. The thermolability of Ply57 is higher than that of the PlyG of Wß phage. This work contributes to our current understanding of phage biodiversity and may be useful for further development of efficient antimicrobials aimed at diagnosing and treating infectious diseases and food contaminations caused by the Bacillus cereus group of bacteria.


Assuntos
Fagos Bacilares , Bacillus cereus , Endopeptidases/metabolismo , Temperatura Alta , Siphoviridae , Proteínas Virais/metabolismo , Fagos Bacilares/classificação , Fagos Bacilares/enzimologia , Fagos Bacilares/ultraestrutura , Bacillus cereus/ultraestrutura , Bacillus cereus/virologia , Estabilidade Enzimática , Siphoviridae/classificação , Siphoviridae/enzimologia , Siphoviridae/ultraestrutura
7.
Viruses ; 12(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967292

RESUMO

Endolysins are phage-encoded enzymes implicated in the breaching of the bacterial cell wall at the end of the viral cycle. This study focuses on the endolysins of Deep-Blue (PlyB221) and Deep-Purple (PlyP32), two phages preying on the Bacillus cereus group. Both enzymes exhibit a typical modular organization with an enzymatically active domain (EAD) located in the N-terminal and a cell wall binding domain (CBD) in the C-terminal part of the protein. In silico analysis indicated that the EAD domains of PlyB221 and PlyP32 are endowed with peptidase and muramidase activities, respectively, whereas in both proteins SH3 domains are involved in the CBD. To evaluate their antimicrobial properties and binding specificity, both endolysins were expressed and purified. PlyB221 and PlyP32 efficiently recognized and lysed all the tested strains from the B. cereus group. Biochemical characterization showed that PlyB221 activity was stable under a wide range of pHs (5-9), NaCl concentrations (up to 200 mM), and temperature treatments (up to 50 °C). Although PlyP32 activity was less stable than that of PlyB221, the endolysin displayed high activity at pH 6-7, NaCl concentration up to 100 mM and the temperature treatment up to 45 °C. Overall, PlyB221 and PlyP32 display suitable characteristics for the development of biocontrol and detection tools.


Assuntos
Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Bacillus cereus/virologia , Endopeptidases/genética , Antibacterianos/metabolismo , Parede Celular/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Especificidade de Hospedeiro , Peptidoglicano/metabolismo
8.
Arch Virol ; 165(5): 1219-1223, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32140835

RESUMO

As the most abundant biological entities, viruses are major players in marine ecosystems. However, our knowledge about virus-host interactions and viral ecology in the deep sea remains very limited. In this study, a novel bacteriophage (designated as phage BVE2) infecting Bacillus cereus group bacteria, was isolated from deep-sea sediments. Phage BVE2 caused host lysis within 1.5 h after infection. However, the presence of two integrase-encoding genes in the BVE2 genome suggested that BVE2 may also follow a temperate strategy. The genome of phage BVE2 is approximately 20 kb in length and is predicted to encode 28 proteins. Genomic and phylogenetic analysis suggested that BVE2 is a highly mosaic phage that has inherited genetic features from Wbeta-like viruses, B. cereus prophages, and its host, suggesting that frequent horizontal gene transfer events occurred during its evolution. This study will help to reveal the evolutionary history of Wbeta-like viruses and improve our understanding of viral diversity and virus-host interactions in the deep sea.


Assuntos
Fagos Bacilares/classificação , Fagos Bacilares/isolamento & purificação , Bacillus cereus/virologia , Genoma Viral , Água do Mar/virologia , Fagos Bacilares/genética , Fagos Bacilares/crescimento & desenvolvimento , Bacteriólise , Transferência Genética Horizontal , Genes Bacterianos , Lisogenia , Recombinação Genética , Análise de Sequência de DNA
9.
Structure ; 27(9): 1355-1365.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353242

RESUMO

Phage endolysins are hydrolytic enzymes that cleave the bacterial cell wall during the lytic cycle. We isolated the bacteriophage PBC5 against Bacillus cereus, a major foodborne pathogen, and describe the molecular interaction between endolysin LysPBC5 and the host peptidoglycan structure. LysPBC5 has an N-terminal glycoside hydrolase 25 domain, and a C-terminal cell-wall binding domain (CBD) that is critical for specific cell-wall recognition and lysis. The crystal and solution structures of CBDs reveal tandem SH3b domains that are tightly engaged with each other. The CBD binds to the peptidoglycan in a bidentate manner via distal ß sheet motifs with pseudo 2-fold symmetry, which can explain its high affinity and host specificity. The CBD primarily interacts with the glycan strand of the peptidoglycan layer instead of the peptide crosslink, implicating the tertiary structure of peptidoglycan as the recognition motif of endolysins.


Assuntos
Bacillus cereus/virologia , Bacteriófagos/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Bacillus cereus/citologia , Bacillus cereus/metabolismo , Bacteriófagos/metabolismo , Sítios de Ligação , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Cell Host Microbe ; 25(5): 746-755.e5, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071296

RESUMO

Temperate phages can adopt either a lytic or lysogenic lifestyle within their host bacteria. It was recently shown that Bacillus-subtilis-infecting phages of the SPbeta group utilize a peptide-based communication system called arbitrium to coordinate the lysogeny decision. The occurrence of peptide-based communication systems among phages more broadly remains to be explored. Here, we uncover a wide array of peptide-based communication systems utilized by phages for lysogeny decisions. These arbitrium-like systems show diverse peptide codes and can be detected in numerous genetically distant phage types and conjugative elements. The pathogens Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are commonly infected by arbitrium-carrying mobile elements, which often carry toxins essential for pathogenicity. Experiments with phages containing these arbitrium-like systems demonstrate their involvement in lysogeny decisions. Finally, our results suggest that the peptide-based decision is executed by an antisense RNA that controls the regulator of the lysogenic state.


Assuntos
Fagos Bacilares/crescimento & desenvolvimento , Bacillus anthracis/virologia , Bacillus cereus/virologia , Bacillus thuringiensis/virologia , Regulação Viral da Expressão Gênica , Peptídeos/metabolismo , Microbiologia do Solo , Fagos Bacilares/genética , Bacteriólise , Lisogenia , RNA não Traduzido/metabolismo
11.
Arch Virol ; 164(7): 1927-1929, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011817

RESUMO

In the study, three Bacillus cereus-specific phages, named DK1, DK2 and DK3, belonging to the family Podoviridae, were isolated from Pearl River water and sludge in Guangzhou, China. The genomes of DK1, DK2 and DK3 were 27,180 bp, 26,357 bp, and 26,865 bp in length and contained 49, 45 and 46 open reading frames, respectively. Among the three phages, DK2 shared the highest genome sequence similarity (96% identity) with DK3. Genes encoding rRNA, tRNA, virulence factors and antibiotic resistance were absent in these phage genomes. In addition, comparative genomic and phylogenetic analysis revealed that they were novel phages of B. cereus. Each genome encoded a putative endolysin that might be of value for the control of the foodborne pathogen B. cereus.


Assuntos
Bacillus cereus/virologia , Genoma Viral/genética , Podoviridae/genética , Podoviridae/isolamento & purificação , Rios/virologia , Esgotos/virologia , China , Endopeptidases/genética , Fases de Leitura Aberta , Podoviridae/classificação
12.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850428

RESUMO

Lytic bacteriophages (or phages) drive bacterial mortality by elaborating exquisite abilities to bind, breach, and destroy bacterial cell membranes and subjugate critical bacterial cell functions. These antimicrobial activities make phages ideal candidates to serve as, or provide sources of, biological control measures for bacterial pathogens. In this study, we isolated the Myoviridae phage vB_BanS_Bcp1 (here referred to as Bcp1) from landfill soil, using a Bacillus anthracis host. The antimicrobial activities of both Bcp1 and its encoded endolysin, PlyB, were examined across different B. cereussensu lato group species, including B. cereussensu stricto, Bacillus thuringiensis, and Bacillus anthracis, with pathogenic potential in humans and multiple different uses in biotechnological applications. The Bcp1 phage infected only a subset (11 to 66%) of each B. cereussensu lato species group tested. In contrast, functional analysis of purified PlyB revealed a potent bacteriolytic activity against all B. cereussensu lato isolates tested (n = 79). PlyB was, furthermore, active across broad temperature, pH, and salt ranges, refractory to the development of resistance, bactericidal as a single agent, and synergistic with a second endolysin, PlyG. To confirm the potential for PlyB as an antimicrobial agent, we demonstrated the efficacy of a single intravenous treatment with PlyB alone or combination with PlyG in a murine model of lethal B. anthracis infection. Overall, our findings show exciting potential for the Bcp1 bacteriophage and the PlyB endolysin as potential new additions to the antimicrobial armamentarium.IMPORTANCE Organisms of the Bacillus cereussensu lato lineage are ubiquitous in the environment and are responsible for toxin-mediated infections ranging from severe food poisoning (B. cereussensu stricto) to anthrax (Bacillus anthracis). The increasing incidence of many of these infections, combined with the specter of antibiotic resistance, has created a need for novel antimicrobials with potent activity, including bacteriophages (or phages) and phage-encoded products (i.e., endolysins). In this study, we describe a broadly infective phage, Bcp1, and its encoded endolysin, PlyB, which exhibited a rapidly bacteriolytic effect against all B. cereussensu lato isolates tested with no evidence of evolving resistance. Importantly, PlyB was highly efficacious in a mouse model of lethal bacteremia with B. anthracis Both the Bcp1 phage and the PlyB endolysin represent novel mechanisms of action compared to antibiotics, with potential applications to address the evolving problem of antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Fagos Bacilares/fisiologia , Bacillus anthracis/efeitos dos fármacos , Bacillus cereus/virologia , Endopeptidases/farmacologia , Myoviridae/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microbiologia do Solo , Instalações de Eliminação de Resíduos
13.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552194

RESUMO

To control the spore-forming human pathogen Bacillus cereus, we isolated and characterized a novel endolysin, LysPBC2, from a newly isolated B. cereus phage, PBC2. Compared to the narrow host range of phage PBC2, LysPBC2 showed very broad lytic activity against all Bacillus, Listeria, and Clostridium species tested. In addition to a catalytic domain and a cell wall binding domain, LysPBC2 has a spore binding domain (SBD) partially overlapping its catalytic domain, which specifically binds to B. cereus spores but not to vegetative cells of B. cereus Both immunogold electron microscopy and a binding assay indicated that the SBD binds the external region of the spore cortex layer. Several amino acid residues required for catalytic or spore binding activity of LysPBC2 were determined by mutagenesis studies. Interestingly, LysPBC2 derivatives with impaired spore binding activity showed an increased lytic activity against vegetative cells of B. cereus compared with that of wild-type LysPBC2. Further biochemical studies revealed that these LysPBC2 derivatives have lower thermal stability, suggesting a stabilizing role of SBD in LysPBC2 structure.IMPORTANCE Bacteriophages produce highly evolved lytic enzymes, called endolysins, to lyse peptidoglycan and release their progeny from bacterial cells. Due to their potent lytic activity and specificity, the use of endolysins has gained increasing attention as a natural alternative to antibiotics. Since most endolysins from Gram-positive-bacterium-infecting phages have a modular structure, understanding the function of each domain is crucial to make effective endolysin-based therapeutics. Here, we report the functional and biochemical characterization of a Bacillus cereus phage endolysin, LysPBC2, which has an unusual spore binding domain and a cell wall binding domain. A single point mutation in the spore binding domain greatly enhanced the lytic activity of endolysin at the cost of reduced thermostability. This work contributes to the understanding of the role of each domain in LysPBC2 and will provide insight for the rational design of efficient antimicrobials or diagnostic tools for controlling B. cereus.


Assuntos
Fagos Bacilares/enzimologia , Bacillus cereus/virologia , Domínio Catalítico , Endopeptidases/metabolismo , Esporos Bacterianos/virologia , Anti-Infecciosos , Fagos Bacilares/genética , Fagos Bacilares/isolamento & purificação , Bacillus cereus/metabolismo , Parede Celular/metabolismo , Endopeptidases/química , Endopeptidases/genética , Especificidade de Hospedeiro , Modelos Moleculares , Peptidoglicano/metabolismo , Mutação Puntual , Conformação Proteica , Domínios Proteicos/genética , Alinhamento de Sequência , Esporos Bacterianos/metabolismo
14.
Mol Cells ; 42(1): 79-86, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30518175

RESUMO

Endolysins are bacteriophage-derived enzymes that hydrolyze the peptidoglycan of host bacteria. Endolysins are considered to be promising tools for the control of pathogenic bacteria. LysB4 is an endolysin produced by Bacillus cereus-infecting bacteriophage B4, and consists of an N-terminal enzymatic active domain (EAD) and a C-terminal cell wall binding domain (CBD). LysB4 was discovered for the first time as an Lalanoyl-D-glutamate endopeptidase with the ability to breakdown the peptidoglycan among B. cereus-infecting phages. To understand the activity of LysB4 at the molecular level, this study determined the X-ray crystal structure of the LysB4 EAD, using the full-length LysB4 endolysin. The LysB4 EAD has an active site that is typical of LAS-type enzymes, where Zn2+ is tetrahedrally coordinated by three amino acid residues and one water molecule. Mutational studies identified essential residues that are involved in lytic activity. Based on the structural and biochemical information about LysB4, we suggest a ligand-docking model and a putative endopeptidase mechanism for the LysB4 EAD. These suggestions add insight into the molecular mechanism of the endolysin LysB4 in B. cereus-infecting phages.


Assuntos
Fagos Bacilares/metabolismo , Bacillus cereus/virologia , Endopeptidases/química , Proteínas Virais/química , Dicroísmo Circular , Cristalografia por Raios X , Ligantes , Simulação de Acoplamento Molecular , Domínios Proteicos , Homologia Estrutural de Proteína
15.
Appl Microbiol Biotechnol ; 102(18): 7901-7912, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30008020

RESUMO

Bacillus cereus is widely distributed food-borne pathogenic bacterium. Due to the harmness to human hearth and the generation of multidrug-resistant B. cereus, it is urgent to develop novel antimicrobial agents. Phage and phage endolysin were taken as novel antimicrobial substance for their specific lytic activity against pathogenic bacteria. In this study, a Myoviridae family phage, designated as vB_BceM-HSE3, infecting the pathogenic multidrug-resistant B. cereus strain was isolated and characterized along with its endolysin. Phage vB_BceM-HSE3 can specially infect the B. cereus group strains, including B. cereus, B. anthracis, and B. thuringiensis, and exhibits high temperature and pH tolerance, which endow it with high potential for been used in controlling pathogenic B. cereus group strains. Genomic analysis reveals that vB_BceM-HSE3 is a novel phage and only shows extremely low genome similarity with available phage genome. Functional analysis of endolysin PlyHSE3 encoding by vB_BceM-HSE3 shows that PlyHSE3 exhibits broader lytic spectrum than the phage and can lyse all the tested B. cereus group strains as well as the tested pathogenic strain of P. aeruginosa. PlyHSE3 also shows broad temperature and pH tolerance, and can efficiently lyse B. cereus strain at temperature at 4 °C and higher than 45 °C, which indicating that PlyHSE3 might can be used in controlling food-borne B. cereus during both the cold storage of food and the stage after the heat treatment of food. The findings of this study enrich our understanding of phage diversity as well as providing resources for developing phage therapy.


Assuntos
Bacillus cereus/efeitos dos fármacos , Bacillus cereus/virologia , Bacteriófagos/fisiologia , Resistência Microbiana a Medicamentos , Endopeptidases/metabolismo , Bacillus cereus/metabolismo , Bacteriófagos/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio
16.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006404

RESUMO

Bacterial endospores can serve as phage genome protection shells against various environmental stresses to enhance microbial control applications. The genomes of polyvalent lytic Bacillus phages PBSC1 and PBSC2, which infect both B. subtilis subsp. subtilis and B. cereus NRS 248, were incorporated into B. subtilis endospores (without integration into the host chromosome). When PBSC1 and PBSC2 were released from germinating endospores, they significantly inhibited the growth of the targeted opportunistic pathogen B. cereus Optimal endospore entrapment was achieved when phages were introduced to the fast-sporulating prespores at a multiplicity of infection of 1. Longer endospore maturation (48 h versus 24 h) increased both spore yield and efficiency of entrapment. Compared with free phages, spore-protected phage genomes showed significantly higher resistance toward high temperatures (60 to 80°C), extreme pH (pH 2 or pH 12), and copper ions (0.1 to 10 mg/liter). Endospore germination is inducible by low concentrations of l-alanine or by a germinant mixture (l-asparagine, d-glucose, d-fructose, and K+) to trigger the expression, assembly, and consequent release of phage particles within 60 to 90 min. Overall, the superior resiliency of polyvalent phages protected by endospores might enable nonrefrigerated phage storage and enhance phage applications after exposure to adverse environmental conditions.IMPORTANCE Bacteriophages are being considered for the control of multidrug-resistant and other problematic bacteria in environmental systems. However, the efficacy of phage-based microbial control is limited by infectivity loss during phage delivery and/or storage. Here, we exploit the pseudolysogenic state of phages, which involves incorporation of their genome into bacterial endospores (without integration into the host chromosome), to enhance survival in unfavorable environments. We isolated polyvalent (broad-host-range) phages that efficiently infect both benign and opportunistically pathogenic Bacillus strains and encapsulated the phage genomes in B. subtilis endospores to significantly improve resistance to various environmental stressors. Encapsulation by spores also significantly enhanced phage genome viability during storage. We also show that endospore germination can be induced on demand with nutrient germinants that trigger the release of active phages. Overall, we demonstrate that encapsulation of polyvalent phage genomes into benign endospores holds great promise for broadening the scope and efficacy of phage biocontrol.


Assuntos
Fagos Bacilares/genética , Bacillus cereus/virologia , Bacillus subtilis/virologia , Genoma Viral , Esporos Bacterianos/virologia , Fagos Bacilares/química , Fagos Bacilares/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Temperatura Alta , Concentração de Íons de Hidrogênio , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
17.
Arch Virol ; 163(9): 2555-2559, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29752557

RESUMO

Bacteriophage Deep-Purple, isolated from an agricultural soil in Belgium, lyses the emetic Bacillus weihenstephanensis strain LH002 and exhibits a lytic activity against 55% of emetic Bacillus cereus and B. weihenstephanensis strains. Deep-Purple is able to complete its lytic cycle within 45 min and is stable to a large range of pHs and temperatures below 60 °C. It possesses an icosahedral head of about 63 nm in diameter and a non-contractile tail of approximately 165 nm in length. The genome of this newly classifiable Siphoviridae family member is 36,278 bp long, with a G+C content of 38.36% and 40 putative CDSs. Most CDSs do not display similarity with other B. cereus group phages supporting the idea that Deep-Purple belongs to a new and currently uncharacterised Siphoviridae subfamily.


Assuntos
Fagos Bacilares/genética , Fagos Bacilares/isolamento & purificação , Bacillus cereus/virologia , Genoma Viral , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Fagos Bacilares/classificação , Composição de Bases , Bélgica , Filogenia , Siphoviridae/classificação , Microbiologia do Solo , Sequenciamento Completo do Genoma
18.
J Microbiol Biotechnol ; 28(1): 87-94, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29316743

RESUMO

This study investigated the feasibility of the lytic, tailed Bacillus cereus-specific phage for use in a ferromagnetoelastic (FME) biosensor as a novel recognition element. The phage was immobilized at various concentrations through either direct adsorption or a combination of 11-mercapto-1-undecanoic acid (11-MUA) and [N-(3-dimethylaminopropyl)-N'-carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS)]. The effects of time and temperature on its lytic properties were investigated through the exposure of B. cereus (4 and 8 logCFU/ml) to the phage (8 logPFU/ml) for various incubation periods at 22°C and at various temperatures for 30 and 60 min. As the phage concentration increased, both immobilization methods also significantly increased the phage density (p < 0.05). SEM images confirmed that the phage density on the FME platform corresponded to the increased phage concentration. As the combination of 11-MUA and EDC/NHS enhanced the phage density and orientation by up to 4.3-fold, it was selected for use. When various incubation was conducted, no significant differences were observed in the survival rate of B. cereus within 30 min, which was in contrast to the significant decreases observed at 45 and 60 min (p < 0.05). In addition, temperature exerted no significant effects on the survival rate across the entire temperature range. This study demonstrated the feasibility of the lytic, tailed B. cereus-specific phage as a novel recognition element for use in an FME biosensor. Thus, the phage could be placed on the surface of foods for at least 30 min without any significant loss of B. cereus, as a result of the inherent lytic activity of the B. cereus-specific phage as a novel recognition element.


Assuntos
Fagos Bacilares/fisiologia , Bacillus cereus/isolamento & purificação , Bacillus cereus/virologia , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos/métodos , Ligação Viral , Imãs , Temperatura , Fatores de Tempo
19.
Intervirology ; 61(6): 272-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31071714

RESUMO

OBJECTIVE: Infants with a weak immune system are prone to infection with Bacillus cereus, which is commonly found in natural environments. With the aim of achieving better control of this pathogenic bacterium, in the present study we characterized a new bacteriophage, ΦBC01. METHODS: Bacteriophage particles were analyzed by transmission electron microscopy. Factors influencing adsorption were identified in a double-layer plaque assay. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was conducted to determine the size of major structural proteins. The complete genome of the phage was analyzed. RESULTS: Bacteriophage particles (105.3 ± 3.1 nm icosahedral head and 208.8 ± 3.6 nm contractile tail) were identified as Myoviridae. ΦBC01 was found to have host specificity to B. cereus. Major structural proteins of ΦBC01 showed 2 well-pronounced bands of 99 and 56 kDa. The 158,385-bp genome sequence of ΦBC01 was determined: 56 of the 239 open reading frames were annotated, indicating involvement in bacteriophage DNA manipulation, cell lysis, packaging, virion structure, and other functions. CONCLUSION: Because of characterization and genotyping of a new bacteriophage from soil samples containing earthworms, this study provides a baseline for the development of alternatives to antibiotics.


Assuntos
Fagos Bacilares/genética , Bacillus cereus/virologia , Genoma Viral , Genômica , Sequenciamento Completo do Genoma , Fagos Bacilares/ultraestrutura , Genômica/métodos , Especificidade de Hospedeiro , Filogenia , Microbiologia do Solo
20.
J Cell Physiol ; 233(2): 771-773, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28444888

RESUMO

The arm race between bacteria and phages leads to the development of many phage resistance mechanisms. Bacteria are perpetually changing their strategy to avert phage infection and killing. Recently, a study published that shed light on a novel bacterial defense system called bacteriophage exclusion (BREX). BREX system is a six-gene cassette in Bacillus cereus which provides complete phage resistance to a broad range of phages, including lytic and temperate ones. It is a novel defense strategy which involves DNA methylation of the host cell and block phage DNA replication.


Assuntos
Bacillus cereus/virologia , Bacillus subtilis/virologia , Bacteriófagos/patogenicidade , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Metilação de DNA , DNA Viral/biossíntese , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA