Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830124

RESUMO

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Produção Agrícola/métodos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/fisiologia , Rizosfera , Estresse Fisiológico/fisiologia , Simbiose/fisiologia , Verduras/metabolismo , Verduras/microbiologia
2.
Biomed Res Int ; 2021: 5568845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981770

RESUMO

The flora compositions of nitrogen-fixing bacteria in roots of Pennisetum giganteum z.x.lin at different growth stages and the expression and copy number of nitrogen-fixing gene nifH were studied by Illumina Miseq second-generation sequencing technology and qRT-PCR. The results showed that there were more than 40,000~50,000 effective sequences in 5 samples from the roots of P. giganteum, with Proteobacteria and Cyanobacteria as the dominant nitrogen-fixing bacteria based on the OTU species annotations for each sample and Bradyrhizobium as the core bacterial genera. The relative expression and quantitative change of nifH gene in roots of P. giganteum at different growth stages were consistent with the changes in the flora compositions of nitrogen-fixing microbia. Both revealed a changing trend with an initial increase and a sequential decrease, as well as changing order as jointing stage>maturation stage>tillering stage>seedling stage>dying stage. The relative expression and copy number of nifH gene were different in different growth stages, and the difference among groups basically reached a significant level (p < 0.05). The relative expression and copy number of nifH gene at the jointing stage were the highest, and the 2-△△CT value was 4.43 folds higher than that at the seedling stage, with a copy number of 1.32 × 107/g. While at the dying stage, it was the lowest, and the 2-△△CT value was 0.67 folds, with a copy number of 0.31 × 107/g.


Assuntos
Proteínas de Bactérias , Bactérias Fixadoras de Nitrogênio , Oxirredutases , Pennisetum/microbiologia , Raízes de Plantas/microbiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dosagem de Genes/genética , Genes Bacterianos/genética , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Oxirredutases/análise , Oxirredutases/genética , Oxirredutases/metabolismo , Microbiologia do Solo
3.
Arch Microbiol ; 203(7): 3919-3932, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021386

RESUMO

Ebinur Lake Wetland is an understudied desert wetland ecosystem, particularly regarding nitrogen cycling. This study aimed to ascertain the diversity and richness of nitrogen-fixing bacterial communities in the Ebinur Lake Wetland. The diversity of the nitrogen-fixing bacteria community of nifH genes from the rhizosphere and non-rhizosphere soils of four plants in different seasons were examined using Illumina HiSeq PE250 high-throughput sequencing technology. The correlation between soil environmental factors and diversity and richness of nitrogen-fixing bacteria was studied using the redundancy analysis (RDA). The results showed that the diversity of nitrogen-fixing bacteria in the rhizosphere soil of the constructive plants was higher than that in the non-rhizosphere soil; also, the diversity in July was higher than that in October and April. Geobacter, Pseudomonas and Bradyrhizobium were the dominant common bacteria in different samples of Ebinur Lake Wetland. The RDA showed that the total nitrogen, available potassium and available phosphoruswere significantly correlated with the diversity and richness of nitrogen-fixing bacteria. The diversity and community structure of nitrogen-fixing bacteria in soil samples also changed over time. The community structures of nitrogen-fixing bacteria in the rhizosphere and non-rhizosphere soils of the four plants were not the same during the same period. The correlation between soil environmental factors and the community structure and abundance of nitrogen-fixing bacteria can provide data basis and theoretical support for the degradation and restoration of Ebinur Lake Wetland.


Assuntos
Biodiversidade , Bactérias Fixadoras de Nitrogênio , Rizosfera , Microbiologia do Solo , China , Ecossistema , Lagos , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Estações do Ano , Solo , Áreas Alagadas
4.
Microbiome ; 9(1): 53, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622403

RESUMO

BACKGROUND: Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N2-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N2-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N2-fixation rates via 15N2 isotopic enrichment and identified potential N2-fixing bacteria using available literature and genomic information. RESULTS: Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N2-fixing bacteria specific to some moss hosts, including potential N2-fixing bacteria outside well-studied cyanobacterial clades. CONCLUSIONS: The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N2-fixation in high-latitude ecosystems. Video Abstract.


Assuntos
Briófitas/microbiologia , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/metabolismo , Alaska , Filogenia
5.
J Appl Microbiol ; 131(2): 898-912, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33331107

RESUMO

AIMS: The present study aimed at gaining an insight into the abundance and genetic diversity of culturable N-fixing epiphyte bacteria on the phyllosphere of maize in arid and semi-arid regions of Iran. METHODS AND RESULTS: Leaf samples of the maize variety, 'single cross 704' (Zea mays L.) were collected from different locations in Iran. The community of culturable N-fixing epiphyte bacteria present was examined by 16S rRNA sequencing, BOXAIR-polymerase chain reaction (PCR) and restricted fragment length polymorphisms analysis of 16S rRNA gene (16S-RFLP). Approximately, 31·82% of the 242 isolates were identified as N-fixers by cultivation of bacteria in Rennie medium and detection of their nifH gene. The N-fixers were affiliated with four bacterial phyla: Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. 16S rRNA sequencing detected 16 genera and 24 different species in the identified phyla. The most dominant genus was Bacillus and the species identified were B. pumilus, B. amyloliquefaciens, B. subtilis, B. paralicheniformis, B. licheniformis, B. niabensis and B. megaterium. In total, 22 RFLP groups were present among the isolates originally identified as N-fixing bacteria. BOXAIR-PCR showed that there was a low similarity level among the N-fixing bacteria isolates, and genetic differentiation of individual strains was relatively great. CONCLUSIONS: Our findings suggest that nitrogen-fixing epiphyte bacteria on the phyllosphere of maize may provide significant nitrogen input into arid and semi-arid ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: This research implies that phyllosphere epiphyte diazotrophs have much to offer in sustainable agriculture and can be an alternative to chemical N-fertilizers for providing nitrogen to crops arid and semi-arid regions.


Assuntos
Bactérias Fixadoras de Nitrogênio , Folhas de Planta/microbiologia , Zea mays/microbiologia , Ecossistema , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética
6.
BMC Plant Biol ; 20(1): 220, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423383

RESUMO

BACKGROUND: Nitrogen is an essential element for sugarcane growth and development and is generally applied in the form of urea often much more than at recommended rates, causing serious soil degradation, particularly soil acidification, as well as groundwater and air pollution. In spite of the importance of nitrogen for plant growth, fewer reports are available to understand the application and biological role of N2 fixing bacteria to improve N2 nutrition in the sugarcane plant. RESULTS: In this study, a total of 350 different bacterial strains were isolated from rhizospheric soil samples of the sugarcane plants. Out of these, 22 isolates were selected based on plant growth promotion traits, biocontrol, and nitrogenase activity. The presence and activity of the nifH gene and the ability of nitrogen-fixation proved that all 22 selected strains have the ability to fix nitrogen. These strains were used to perform 16S rRNA and rpoB genes for their identification. The resulted amplicons were sequenced and phylogenetic analysis was constructed. Among the screened strains for nitrogen fixation, CY5 (Bacillus megaterium) and CA1 (Bacillus mycoides) were the most prominent. These two strains were examined for functional diversity using Biolog phenotyping, which confirmed the consumption of diverse carbon and nitrogen sources and tolerance to low pH and osmotic stress. The inoculated bacterial strains colonized the sugarcane rhizosphere successfully and were mostly located in root and leaf. The expression of the nifH gene in both sugarcane varieties (GT11 and GXB9) inoculated with CY5 and CA1 was confirmed. The gene expression studies showed enhanced expression of genes of various enzymes such as catalase, phenylalanine-ammonia-lyase, superoxide dismutase, chitinase and glucanase in bacterial-inoculated sugarcane plants. CONCLUSION: The results showed that a substantial number of Bacillus isolates have N-fixation and biocontrol property against two sugarcane pathogens Sporisorium scitamineum and Ceratocystis paradoxa. The increased activity of genes controlling free radical metabolism may at least in part accounts for the increased tolerance to pathogens. Nitrogen-fixation was confirmed in sugarcane inoculated with B. megaterium and B. mycoides strains using N-balance and 15N2 isotope dilution in different plant parts of sugarcane. This is the first report of Bacillus mycoides as a nitrogen-fixing rhizobacterium in sugarcane.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/metabolismo , Saccharum/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rizoma/crescimento & desenvolvimento , Rizoma/microbiologia , Saccharum/microbiologia
7.
Curr Microbiol ; 77(8): 1746-1755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32322907

RESUMO

Soybean (Glycine max L.) is an important legume that greatly benefits from inoculation with nitrogen-fixing bacteria. In a previous study, five efficient nitrogen-fixing bacterial strains, isolated from nodules of soybean inoculated with soil from semi-arid region, Northeast Brazil, were identified as a new group within the genus Bradyrhizobium. The taxonomic status of these strains was evaluated in this study. The phylogenetic analysis of the 16S rRNA gene showed the high similarity of the five strains to Bradyrhizobium brasilense UFLA03-321T (100%), B. pachyrhizi PAC48T (100%), B. ripae WR4T (100%), B. elkanii USDA 76T (99.91%), and B. macuxiense BR 10303T (99.91%). However, multilocus sequence analysis of the housekeeping genes atpD, dnaK, gyrB, recA, and rpoB, average nucleotide identity, and digital DNA-DNA hybridization analyses supported the classification of the group as B. brasilense. Some phenotypic characteristics allowed differentiating the five strains and the type strain of B. brasilense from the two neighboring species (B. pachyrhizi PAC48T and B. elkanii USDA 76T). The nodC and nifH genes' analyses showed that these strains belong to symbiovar sojae, together with B. elkanii (USDA 76T) and B. ferriligni (CCBAU 51502T). The present results support the classification of these five strains as Bradyrhizobium brasilense (symbiovar sojae).


Assuntos
Bradyrhizobium/classificação , Glycine max/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Clima Desértico , Genes Bacterianos , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
8.
Arch Microbiol ; 202(6): 1369-1380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166359

RESUMO

A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mimosa/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Phaseolus/microbiologia , Composição de Bases/genética , Brasil , Burkholderiaceae/genética , DNA Bacteriano/genética , Florestas , Genes Essenciais/genética , Tipagem de Sequências Multilocus , Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
9.
Int Microbiol ; 23(3): 415-427, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31898032

RESUMO

Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.


Assuntos
Chenopodiaceae/microbiologia , Endófitos , Bactérias Fixadoras de Nitrogênio , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Agricultura , Chenopodiaceae/crescimento & desenvolvimento , DNA Bacteriano , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fertilizantes , Microbiota/genética , Micrococcaceae/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo
10.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034011

RESUMO

Climate warming and subsequent permafrost thaw may result in organic carbon and nutrient stores being metabolized by microbial communities, resulting in a positive feedback loop of greenhouse gas (GHG) soil emissions. As the third most important GHG, understanding nitrous oxide (N2O) flux in Arctic mineral ice-wedge polygon cryosols and its relationship to the active microbial community is potentially a key parameter for understanding future GHG emissions and climatic warming potential. In the present study, metatranscriptomic analyses of active layer Arctic cryosols, at a representative ice-wedge polygon site, identified active nitrogen-fixing and denitrifying bacteria that included members of Rhizobiaceae, Nostocaceae, Cyanothecaceae, Rhodobacteraceae, Burkholderiaceae, Chloroflexaceae, Azotobacteraceae and Ectothiorhodospiraceae. Unique microbial assemblages with higher proportion of Rhodobacteriales and Rhocyclales were identified by targeted functional gene sequencing at locations with higher (P = 0.053) N2O emissions in the wetter trough soils compared with the dryer polygon interior soils. This coincided with a higher relative abundance of the denitrification nirS gene and higher nitrate/nitrite concentrations in trough soils. The elevated N2O flux observed from wetter trough soils compared with drier polygon interior soils is concerning from a climate warming perspective, since the Arctic is predicted to become warmer and wetter.


Assuntos
Gelo/análise , Bactérias Fixadoras de Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Pergelissolo/microbiologia , Regiões Árticas , Desnitrificação , Microbiota , Nitratos/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Óxido Nitroso/análise , Pergelissolo/química , Filogenia , Microbiologia do Solo
11.
PLoS One ; 14(2): e0211271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726265

RESUMO

Cycads are among the few plants that have developed specialized roots to host nitrogen-fixing bacteria. We describe the bacterial diversity of the coralloid roots from seven Dioon species and their surrounding rhizosphere and soil. Using 16S rRNA gene amplicon sequencing, we found that all coralloid roots are inhabited by a broad diversity of bacterial groups, including cyanobacteria and Rhizobiales among the most abundant groups. The diversity and composition of the endophytes are similar in the six Mexican species of Dioon that we evaluated, suggesting a recent divergence of Dioon populations and/or similar plant-driven restrictions in maintaining the coralloid root microbiome. Botanical garden samples and natural populations have a similar taxonomic composition, although the beta diversity differed between these populations. The rhizosphere surrounding the coralloid root serves as a reservoir and source of mostly diazotroph and plant growth-promoting groups that colonize the coralloid endosphere. In the case of cyanobacteria, the endosphere is enriched with Nostoc spp and Calothrix spp that are closely related to previously reported symbiont genera in cycads and other early divergent plants. The data reported here provide an in-depth taxonomic characterization of the bacterial community associated with coralloid root microbiome. The functional aspects of the endophytes, their biological interactions, and their evolutionary history are the next research step in this recently discovered diversity within the cycad coralloid root microbiome.


Assuntos
Bactérias Fixadoras de Nitrogênio/classificação , Análise de Sequência de DNA/métodos , Zamiaceae/microbiologia , Biodiversidade , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Zamiaceae/classificação
12.
Environ Geochem Health ; 41(5): 1953-1966, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30767095

RESUMO

Comprehensive studies on the effect of arsenic (As) on free-living diazotrophs that play a crucial role in soil fertility by nitrogen fixation are still scanty. Here, we isolated three free-living bacteria from rice field with potential nitrogen-fixing ability and investigated the impact of As on their nifH gene expression and extracellular polysaccharide (EPS) production in culture condition and soil system. 16S rRNA sequence analysis showed that the isolated bacteria were affiliated to ß-Proteobacteria, γ-Proteobacteria and Firmicutes. As(III) exposure to bacterial isolates followed by RT-qPCR analysis revealed that elevated levels of As reduced the expression of nifH gene in selective bacteria, both in culture medium and soil condition. We also noticed reduced production of EPS under higher concentration of As. All the three bacteria showed high tolerance to As(III), able to oxidize As and exhibited significant plant growth-promoting traits. This investigation indicated that an environment exposed with higher concentration of As might perturbed the activity of free-living diazotrophs in agricultural soil system.


Assuntos
Arsênio/toxicidade , Bactérias/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Bactérias Fixadoras de Nitrogênio/efeitos dos fármacos , Oxirredutases/genética , Microbiologia do Solo , Arsênio/análise , Arsênio/metabolismo , Meios de Cultura/química , Poluentes Ambientais/toxicidade , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Polissacarídeos Bacterianos/metabolismo , RNA Ribossômico 16S/genética , Solo/química
13.
Antonie Van Leeuwenhoek ; 112(1): 23-29, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306463

RESUMO

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.


Assuntos
Bactérias Fixadoras de Nitrogênio/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Nodulação , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais
14.
Microbes Environ ; 33(4): 357-365, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30404970

RESUMO

Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70-86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.


Assuntos
Biodiversidade , Variação Genética , Fontes Termais/microbiologia , Microbiota , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredutases/genética , DNA Bacteriano/genética , Japão , Microbiota/genética , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Microbes Environ ; 33(4): 394-401, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30473565

RESUMO

The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Fontes Termais/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Oxirredutases/metabolismo , Bactérias/classificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Japão , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Oxirredução , Oxirredutases/genética , Oxigênio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137292

RESUMO

Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.


Assuntos
Archaea/metabolismo , Ciclo do Carbono , Lagos/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Processos Autotróficos , Ciclo do Carbono/genética , Nitritos/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredução
17.
Huan Jing Ke Xue ; 39(8): 3885-3893, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998698

RESUMO

In order to evaluate the potential risk of planting transgenic corn on soil nitrogen-fixing microorganisms, in 2015, rhizosphere and non-rhizosphere soil samples were collected at the jointing stage, tassel stage, milky stage, and ripening stage, and the effects of transgenic maize with the cry1Ab and epsps genes on the abundance and diversity of soil nitrogen-fixing bacteria were studied by real-time quantitative PCR and T-RFLP. The results showed that the copy number of the diazotrophic nifH gene in the rhizosphere and non-rhizosphere soil of transgenic maize with the cry1Ab and epsps genes (C0030.3.5) and its parental maize (DBN318) showed a trend where it first increased and then decrease with the growth stages, ranging between 2.99×107 and 7.02×107 copies·g-1. The abundance of the diazotrophic nifH gene in the rhizosphere soil and non-rhizosphere soil gene showed no significant difference between TM and PM in the same growth stage (P>0.05). The correlation analysis showed that the abundance of the diazotrophic nifH gene was positively correlated with the content of organic matter, but negatively correlated with water content. T-RFLP analysis yielded 14 T-RFs of different lengths, and 43-bp and 155-bp fragments were the dominant population. The community composition of nitrogen-fixing bacteria was the same as that of TM and PM in the rhizosphere soil and non-rhizosphere soil, and there was no significant difference between the TM and PM populations in the same growth period (P>0.05). The Shannon index and Evenness index of the diazotrophic nifH gene showed a trend where they first increased and then decreased with the growth period, and there was no significant difference in the Shannon index and Evenness index in the same growth stage between the rhizosphere and non-rhizosphere soil samples. Principal component analysis(PCA) indicated that the composition of nitrogen-fixing bacteria was not different between TM and PM. Redundancy analysis (RDA) showed that soil ammonium, nitrogen, and pH were significantly correlated with composition of nitrogen-fixing bacteria.


Assuntos
Bactérias Fixadoras de Nitrogênio/classificação , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Rizosfera , Solo , Zea mays/genética
18.
Environ Sci Pollut Res Int ; 25(5): 4951-4962, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29204941

RESUMO

Despite the fact that the nitrogen (N) fixers act as the key regulator of ecosystem process, a detailed study of their abundance, diversity, and dynamics in arsenic (As)-contaminated rice fields is missing so far. DNA extracted from soil followed by 16S rRNA and nifH gene-based real-time qPCR, clone library analysis, and DNA sequencing were used to examine the status of the total and diazotrophic communities in two agricultural fields with and without arsenic contamination history during one rice cultivation season. In general, higher nifH and 16S rRNA gene copy numbers were observed in rice growing soils with lesser As than that with higher As. Elevated levels of 16S rRNA and nifH genes in soil is directly associated with total and nitrogen fixers abundance in the agricultural land without As contamination history through the cultivation period, but the copy number of 16S rRNA gene was decreased, and the nifH gene remained unchanged in the As-contaminated land. Additionally, Canonical Correspondence Analysis (CCA) indicated the possible suppression of nifH gene abundance by soil pH, phosphate, and As content. Increased abundance of total and Acidobacterial lineages in low As-containing soil and the detection of several uncultured groups among nifH gene sequence in higher frequency indicated the presence of novel nifH bearing bacterial groups. Conversely, the abundance of copiotrophic Proteobacterial lineages gradually increased in soil with higher As. Herein, our study demonstrated that the dynamics of free-living nitrogen-fixing bacterial communities were perturbed due to As contamination in agricultural land.


Assuntos
Arsênio/análise , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Irrigação Agrícola , Biodiversidade , Genes Bacterianos , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA
19.
Sci Rep ; 7(1): 10032, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855587

RESUMO

Aerobic denitrification is a process reducing the nitrate into gaseous nitrogen forms in the presence of oxygen gas, which makes the nitrification and denitrification performed simultaneously. However, little was known on the diversity of the culturable aerobic denitrifying bacteria in the surface water system. In this study, 116 strains of aerobic denitrifying bacteria were isolated from the sediment, water and biofilm samples in Liangshui River of Beijing. These bacteria were classified into 14 genera based on the 16 S rDNA, such as Pseudomonas, Rheinheimera, and Gemmobacter. The Pseudomonas sp., represented by the Pseudomonas stutzeri, Pseudomonas mendocina and Pseudomonas putida, composed the major culturable aerobic denitrifiers of the river, followed by Ochrobactrum sp. and Rheinheimera sp. The PCA plot showed the unclassified Pseudomonas sp. and Rheinheimera pacifica preferred to inhabit in biofilm phase while one unclassified Ochrobactrum sp. and Pseudomonas resinovorans had higher abundance in the sediment. In the overlying water, the Pseudomonas stutzeri and Ochrobactrum rhizosphaerae were found to have higher abundance, indicating these aerobic denitrifiers had different habitat-preferable characteristics among the 3 phases of river system. The findings may help select the niche to isolate the aerobic denitrifiers and facilitate the bioaugmentation-based purification of the nitrate polluted surface water.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Biofilmes , Desnitrificação , Sedimentos Geológicos/microbiologia , Microbiota , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rios/microbiologia , Bactérias Aeróbias/classificação , Bactérias Aeróbias/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/metabolismo
20.
Microbiol Res ; 202: 43-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647122

RESUMO

Diverse nitrogen fixing bacteria harbouring chick pea rhizosphere and root nodules were tested for multiple plant growth promoting traits like tricalcium phosphate (TCP) and rock phosphate (RP) solubilization, production of ammonia, indole 3-acetic acid, chitinase, phytase and alkaline phosphatase. Isolates belonged to diverse genus like Enterobacter, Acinetobacter, Erwinia, Pseudomonas, Rhizobium, Sinorhizobium, Ensifer, Klebsiella, etc. Most isolates solubilized TCP and RP along with the lowering of media pH, indicating acidification to be the chief mechanism behind this solubilization. However, lowering of media pH and P release decreased by 32-100% when media was supplemented with succinate, a major component of plant root exudates indicating succinate mediated repression of P solubilization. Maximum TCP and RP solubilization with P release of 850µg/mL and 2088µg/mL was obtained with lowering of media pH up to 2.8 and 3.3 for isolate E43 and PSB1 respectively. This pH drop changed to 4.4 and 4.8 with 80% and 87% decrease in P solubilization in the presence of succinate. Maximum 246µg/mL indole 3-acetic acid production in Lh3, 44.8U/mL chitinase activity in MB3, 11.3U/mL phytase activity in I91 and 9.4U/mL alkaline phosphatase activity in SM1 were also obtained. Most isolates showed multiple PGP traits which resulted in significant plant growth promotion of chick pea plants. Present study shows repression of P solubilization by succinate for various bacterial groups which might be one of the reasons why phosphate solubilizing bacteria which perform well in vitro often fail in vivo. Studying this repression mechanism might be critical in understanding the in vivo efficacy.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Fosfatos/metabolismo , Desenvolvimento Vegetal , Ácido Succínico/metabolismo , 6-Fitase/metabolismo , Fosfatase Alcalina/metabolismo , Amônia/metabolismo , Fosfatos de Cálcio/metabolismo , Quitinases/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA