Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755437

RESUMO

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Assuntos
Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/análise , Fixação de Nitrogênio , Análise de Sequência de DNA , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/metabolismo
2.
PLoS One ; 16(9): e0256754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469461

RESUMO

Soil microorganism plays an important role in nitrogen (N) fixation process of paddy field, but the related information about how soil microorganism that drive N fixation process response to change of soil phy-chemical characteristics under the double-cropping rice (Oryza sativa L.) paddy field in southern of China is need to further study. Therefore, the impacts of 34-years different long-term fertilization system on soil N-fixing bacteria community under the double-cropping rice paddy field in southern of China were investigated by taken chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method in this paper. The field experiment were set up four different fertilizer treatments: chemical fertilizer alone (MF), rice straw and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and unfertilized as a control (CK). This results showed that compared with CK treatment, the diversity index of cbbLR and nifH genes with OM and RF treatments were significantly increased (p<0.05), respectively. Meanwhile, the abundance of cbbLR gene with OM, RF and MF treatments were increased by 23.94, 12.19 and 6.70×107 copies g-1 compared to CK treatment, respectively. Compared with CK treatment, the abundance of nifH gene with OM, RF and MF treatments were increased by 23.90, 8.82 and 5.40×109 copies g-1, respectively. This results indicated that compared with CK treatment, the soil autotrophic azotobacter and nitrogenase activities with OM and RF treatments were also significantly increased (p<0.05), respectively. There were an obvious difference in features of soil N-fixing bacteria community between application of inorganic fertilizer and organic manure treatments. Therefore, this results demonstrated that abundance of soil N-fixing bacteria community in the double-cropping rice paddy field were increased by long-term applied with organic manure and crop residue managements.


Assuntos
Produção Agrícola/métodos , Fertilizantes/efeitos adversos , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , China , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/efeitos dos fármacos , Bactérias Fixadoras de Nitrogênio/metabolismo , Solo/química
3.
Sci Rep ; 11(1): 9187, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911103

RESUMO

Previous studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Bactérias Fixadoras de Nitrogênio/fisiologia , Saccharum/microbiologia , Agricultura , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genômica/métodos , Klebsiella/genética , Klebsiella/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/efeitos dos fármacos , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredutases/genética , Rizosfera , Microbiologia do Solo , Fatores de Virulência/genética
4.
BMC Plant Biol ; 20(1): 220, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423383

RESUMO

BACKGROUND: Nitrogen is an essential element for sugarcane growth and development and is generally applied in the form of urea often much more than at recommended rates, causing serious soil degradation, particularly soil acidification, as well as groundwater and air pollution. In spite of the importance of nitrogen for plant growth, fewer reports are available to understand the application and biological role of N2 fixing bacteria to improve N2 nutrition in the sugarcane plant. RESULTS: In this study, a total of 350 different bacterial strains were isolated from rhizospheric soil samples of the sugarcane plants. Out of these, 22 isolates were selected based on plant growth promotion traits, biocontrol, and nitrogenase activity. The presence and activity of the nifH gene and the ability of nitrogen-fixation proved that all 22 selected strains have the ability to fix nitrogen. These strains were used to perform 16S rRNA and rpoB genes for their identification. The resulted amplicons were sequenced and phylogenetic analysis was constructed. Among the screened strains for nitrogen fixation, CY5 (Bacillus megaterium) and CA1 (Bacillus mycoides) were the most prominent. These two strains were examined for functional diversity using Biolog phenotyping, which confirmed the consumption of diverse carbon and nitrogen sources and tolerance to low pH and osmotic stress. The inoculated bacterial strains colonized the sugarcane rhizosphere successfully and were mostly located in root and leaf. The expression of the nifH gene in both sugarcane varieties (GT11 and GXB9) inoculated with CY5 and CA1 was confirmed. The gene expression studies showed enhanced expression of genes of various enzymes such as catalase, phenylalanine-ammonia-lyase, superoxide dismutase, chitinase and glucanase in bacterial-inoculated sugarcane plants. CONCLUSION: The results showed that a substantial number of Bacillus isolates have N-fixation and biocontrol property against two sugarcane pathogens Sporisorium scitamineum and Ceratocystis paradoxa. The increased activity of genes controlling free radical metabolism may at least in part accounts for the increased tolerance to pathogens. Nitrogen-fixation was confirmed in sugarcane inoculated with B. megaterium and B. mycoides strains using N-balance and 15N2 isotope dilution in different plant parts of sugarcane. This is the first report of Bacillus mycoides as a nitrogen-fixing rhizobacterium in sugarcane.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/metabolismo , Saccharum/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rizoma/crescimento & desenvolvimento , Rizoma/microbiologia , Saccharum/microbiologia
5.
Anal Chem ; 92(10): 7299-7306, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343130

RESUMO

In plants, long-distance transport of chemicals from source to sink takes place through the transfer of sap inside complex trafficking systems. Access to this information provides insight into the physiological responses that result from the interactions between the organism and its environment. In vivo analysis offers minimal perturbation to the physiology of the organism, thus providing information that represents the native physiological state more accurately. Here we describe capillary microsampling with electrospray ionization mass spectrometry (ESI-MS) for the in vivo analysis of xylem sap directly from plants. Initially, fast MS profiling was performed by ESI from the whole sap exuding from wounds of living plants in their native environment. This sap, however, originated from the xylem and phloem and included the cytosol of damaged cells. Combining capillary microsampling with ESI-MS enabled targeted sampling of the xylem sap and single parenchymal cells in the pith, thereby differentiating their chemical compositions. With this method we analyzed soybean plants infected by nitrogen-fixing bacteria and uninfected plants to investigate the effects of symbiosis on chemical transport through the sap. Infected plants exhibited higher abundances for certain nitrogen-containing metabolites in their sap, namely allantoin, allantoic acid, hydroxymethylglutamate, and methylene glutamate, compared to uninfected plants. Using capillary microsampling, we localized these compounds to the xylem, which indicated their transport from the roots to the upper parts of the plant. Differences between metabolite levels in sap from the infected and uninfected plants indicated that the transport of nitrogen-containing and other metabolites is regulated depending on the source of nitrogen supply.


Assuntos
Alantoína/análise , Glutamatos/análise , Glycine max/química , Ureia/análogos & derivados , Xilema/química , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Glycine max/microbiologia , Espectrometria de Massas por Ionização por Electrospray , Ureia/análise
6.
Curr Microbiol ; 77(8): 1746-1755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32322907

RESUMO

Soybean (Glycine max L.) is an important legume that greatly benefits from inoculation with nitrogen-fixing bacteria. In a previous study, five efficient nitrogen-fixing bacterial strains, isolated from nodules of soybean inoculated with soil from semi-arid region, Northeast Brazil, were identified as a new group within the genus Bradyrhizobium. The taxonomic status of these strains was evaluated in this study. The phylogenetic analysis of the 16S rRNA gene showed the high similarity of the five strains to Bradyrhizobium brasilense UFLA03-321T (100%), B. pachyrhizi PAC48T (100%), B. ripae WR4T (100%), B. elkanii USDA 76T (99.91%), and B. macuxiense BR 10303T (99.91%). However, multilocus sequence analysis of the housekeeping genes atpD, dnaK, gyrB, recA, and rpoB, average nucleotide identity, and digital DNA-DNA hybridization analyses supported the classification of the group as B. brasilense. Some phenotypic characteristics allowed differentiating the five strains and the type strain of B. brasilense from the two neighboring species (B. pachyrhizi PAC48T and B. elkanii USDA 76T). The nodC and nifH genes' analyses showed that these strains belong to symbiovar sojae, together with B. elkanii (USDA 76T) and B. ferriligni (CCBAU 51502T). The present results support the classification of these five strains as Bradyrhizobium brasilense (symbiovar sojae).


Assuntos
Bradyrhizobium/classificação , Glycine max/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Clima Desértico , Genes Bacterianos , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
7.
Arch Microbiol ; 202(6): 1369-1380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166359

RESUMO

A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mimosa/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Phaseolus/microbiologia , Composição de Bases/genética , Brasil , Burkholderiaceae/genética , DNA Bacteriano/genética , Florestas , Genes Essenciais/genética , Tipagem de Sequências Multilocus , Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
8.
Int Microbiol ; 23(3): 415-427, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31898032

RESUMO

Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.


Assuntos
Chenopodiaceae/microbiologia , Endófitos , Bactérias Fixadoras de Nitrogênio , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Agricultura , Chenopodiaceae/crescimento & desenvolvimento , DNA Bacteriano , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fertilizantes , Microbiota/genética , Micrococcaceae/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo
9.
Methods Mol Biol ; 2057: 119-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595476

RESUMO

Symbiotic nitrogen fixation (SNF) is a characteristic feature of nodulating legumes. The wild legumes are comparatively less explored for their SNF ability; hence, it is essential to study nodulation and identify the microsymbiont diversity associated with them. This chapter aims to describe the methodology for nodule hunting; trapping, isolation, and characterization of root nodule bacteria (RNB) at phenotypic, genotypic, and symbiotic levels. The documentation of nodulating native legume species and the rhizobial diversity associated with them in various parts of world has gained attention as this symbiotic association provides fixed nitrogen, improves productivity of plants in an ecofriendly manner. Before field-based applications the symbiotic bacteria need to be assessed for their N fixing ability as well as characterized at molecular level. The phylogeny based on symbiosis-essential genes supplemented with the host-range studies helps in better understanding of the symbiotaxonomy of rhizobia. More efficient symbiotic couples need to be screened by cross-nodulation studies for their application in agricultural practices.


Assuntos
Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Impressões Digitais de DNA/métodos , Fabaceae , Genes Essenciais , Nitrogênio/metabolismo , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Filogenia , Rhizobium/genética , Rhizobium/metabolismo , Rhizobium/fisiologia , Simbiose/fisiologia
10.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034011

RESUMO

Climate warming and subsequent permafrost thaw may result in organic carbon and nutrient stores being metabolized by microbial communities, resulting in a positive feedback loop of greenhouse gas (GHG) soil emissions. As the third most important GHG, understanding nitrous oxide (N2O) flux in Arctic mineral ice-wedge polygon cryosols and its relationship to the active microbial community is potentially a key parameter for understanding future GHG emissions and climatic warming potential. In the present study, metatranscriptomic analyses of active layer Arctic cryosols, at a representative ice-wedge polygon site, identified active nitrogen-fixing and denitrifying bacteria that included members of Rhizobiaceae, Nostocaceae, Cyanothecaceae, Rhodobacteraceae, Burkholderiaceae, Chloroflexaceae, Azotobacteraceae and Ectothiorhodospiraceae. Unique microbial assemblages with higher proportion of Rhodobacteriales and Rhocyclales were identified by targeted functional gene sequencing at locations with higher (P = 0.053) N2O emissions in the wetter trough soils compared with the dryer polygon interior soils. This coincided with a higher relative abundance of the denitrification nirS gene and higher nitrate/nitrite concentrations in trough soils. The elevated N2O flux observed from wetter trough soils compared with drier polygon interior soils is concerning from a climate warming perspective, since the Arctic is predicted to become warmer and wetter.


Assuntos
Gelo/análise , Bactérias Fixadoras de Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Pergelissolo/microbiologia , Regiões Árticas , Desnitrificação , Microbiota , Nitratos/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Óxido Nitroso/análise , Pergelissolo/química , Filogenia , Microbiologia do Solo
11.
PLoS One ; 14(2): e0211271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726265

RESUMO

Cycads are among the few plants that have developed specialized roots to host nitrogen-fixing bacteria. We describe the bacterial diversity of the coralloid roots from seven Dioon species and their surrounding rhizosphere and soil. Using 16S rRNA gene amplicon sequencing, we found that all coralloid roots are inhabited by a broad diversity of bacterial groups, including cyanobacteria and Rhizobiales among the most abundant groups. The diversity and composition of the endophytes are similar in the six Mexican species of Dioon that we evaluated, suggesting a recent divergence of Dioon populations and/or similar plant-driven restrictions in maintaining the coralloid root microbiome. Botanical garden samples and natural populations have a similar taxonomic composition, although the beta diversity differed between these populations. The rhizosphere surrounding the coralloid root serves as a reservoir and source of mostly diazotroph and plant growth-promoting groups that colonize the coralloid endosphere. In the case of cyanobacteria, the endosphere is enriched with Nostoc spp and Calothrix spp that are closely related to previously reported symbiont genera in cycads and other early divergent plants. The data reported here provide an in-depth taxonomic characterization of the bacterial community associated with coralloid root microbiome. The functional aspects of the endophytes, their biological interactions, and their evolutionary history are the next research step in this recently discovered diversity within the cycad coralloid root microbiome.


Assuntos
Bactérias Fixadoras de Nitrogênio/classificação , Análise de Sequência de DNA/métodos , Zamiaceae/microbiologia , Biodiversidade , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Zamiaceae/classificação
12.
Antonie Van Leeuwenhoek ; 112(1): 23-29, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306463

RESUMO

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.


Assuntos
Bactérias Fixadoras de Nitrogênio/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Nodulação , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais
13.
Bioelectrochemistry ; 125: 105-115, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366231

RESUMO

A new approach to microbial electrosynthesis is proposed, aimed at producing whole biomass from N2 and inorganic carbon, by electrostimulation of complex microbial communities. On a carbon-based conductor under constant polarization (-0.7 V vs SHE), an electroactive biofilm was enriched with autotrophic nitrogen fixing microorganims and led to biomass synthesis at higher amounts (up to 18 fold), as compared to controls kept at open circuit (OC). After 110 days, the electron transfer had increased by 30-fold, as compared to abiotic conditions. Metagenomics evidenced Nif genes associated with autotrophs (both Archaea and Bacteria) only in polarized biofilms, but not in OC. With this first proof of concept experiment, we propose to call this promising field 'bioelectrochemical nitrogen fixation' (e-BNF): a possible way to 'power' biological nitrogen fixation, organic carbon storage and soil fertility against desertification, and possibly a new tool to study the development of early prokaryotic life in extreme environments.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Carbono/metabolismo , Técnicas Eletroquímicas/instrumentação , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/fisiologia , Archaea/genética , Archaea/fisiologia , Processos Autotróficos , Biomassa , Eletrodos , Desenho de Equipamento , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia
14.
Microbes Environ ; 33(4): 357-365, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30404970

RESUMO

Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70-86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.


Assuntos
Biodiversidade , Variação Genética , Fontes Termais/microbiologia , Microbiota , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredutases/genética , DNA Bacteriano/genética , Japão , Microbiota/genética , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137292

RESUMO

Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.


Assuntos
Archaea/metabolismo , Ciclo do Carbono , Lagos/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Processos Autotróficos , Ciclo do Carbono/genética , Nitritos/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredução
16.
Anal Chem ; 90(8): 5082-5089, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29557648

RESUMO

Nitrogen (N) fixation is the conversion of inert nitrogen gas (N2) to bioavailable N essential for all forms of life. N2-fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15N2 stable isotope probing (SIP) was developed to discern N2-fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N2-fixing bacteria), along with a marked 15N2-induced Cyt c band shift, generated a highly distinguishable biomarker for N2 fixation. 15N2-induced shift was consistent well with 15N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N2-fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15N2 percentage allowed quantification of N2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.


Assuntos
Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Microbiologia do Solo , Análise Espectral Raman , Citocromos c/química , Marcação por Isótopo , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Análise de Célula Única
17.
Environ Sci Pollut Res Int ; 25(5): 4951-4962, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29204941

RESUMO

Despite the fact that the nitrogen (N) fixers act as the key regulator of ecosystem process, a detailed study of their abundance, diversity, and dynamics in arsenic (As)-contaminated rice fields is missing so far. DNA extracted from soil followed by 16S rRNA and nifH gene-based real-time qPCR, clone library analysis, and DNA sequencing were used to examine the status of the total and diazotrophic communities in two agricultural fields with and without arsenic contamination history during one rice cultivation season. In general, higher nifH and 16S rRNA gene copy numbers were observed in rice growing soils with lesser As than that with higher As. Elevated levels of 16S rRNA and nifH genes in soil is directly associated with total and nitrogen fixers abundance in the agricultural land without As contamination history through the cultivation period, but the copy number of 16S rRNA gene was decreased, and the nifH gene remained unchanged in the As-contaminated land. Additionally, Canonical Correspondence Analysis (CCA) indicated the possible suppression of nifH gene abundance by soil pH, phosphate, and As content. Increased abundance of total and Acidobacterial lineages in low As-containing soil and the detection of several uncultured groups among nifH gene sequence in higher frequency indicated the presence of novel nifH bearing bacterial groups. Conversely, the abundance of copiotrophic Proteobacterial lineages gradually increased in soil with higher As. Herein, our study demonstrated that the dynamics of free-living nitrogen-fixing bacterial communities were perturbed due to As contamination in agricultural land.


Assuntos
Arsênio/análise , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Irrigação Agrícola , Biodiversidade , Genes Bacterianos , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA
18.
Sci Rep ; 7(1): 10032, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855587

RESUMO

Aerobic denitrification is a process reducing the nitrate into gaseous nitrogen forms in the presence of oxygen gas, which makes the nitrification and denitrification performed simultaneously. However, little was known on the diversity of the culturable aerobic denitrifying bacteria in the surface water system. In this study, 116 strains of aerobic denitrifying bacteria were isolated from the sediment, water and biofilm samples in Liangshui River of Beijing. These bacteria were classified into 14 genera based on the 16 S rDNA, such as Pseudomonas, Rheinheimera, and Gemmobacter. The Pseudomonas sp., represented by the Pseudomonas stutzeri, Pseudomonas mendocina and Pseudomonas putida, composed the major culturable aerobic denitrifiers of the river, followed by Ochrobactrum sp. and Rheinheimera sp. The PCA plot showed the unclassified Pseudomonas sp. and Rheinheimera pacifica preferred to inhabit in biofilm phase while one unclassified Ochrobactrum sp. and Pseudomonas resinovorans had higher abundance in the sediment. In the overlying water, the Pseudomonas stutzeri and Ochrobactrum rhizosphaerae were found to have higher abundance, indicating these aerobic denitrifiers had different habitat-preferable characteristics among the 3 phases of river system. The findings may help select the niche to isolate the aerobic denitrifiers and facilitate the bioaugmentation-based purification of the nitrate polluted surface water.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Biofilmes , Desnitrificação , Sedimentos Geológicos/microbiologia , Microbiota , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rios/microbiologia , Bactérias Aeróbias/classificação , Bactérias Aeróbias/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/metabolismo
19.
Microbiol Res ; 202: 43-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647122

RESUMO

Diverse nitrogen fixing bacteria harbouring chick pea rhizosphere and root nodules were tested for multiple plant growth promoting traits like tricalcium phosphate (TCP) and rock phosphate (RP) solubilization, production of ammonia, indole 3-acetic acid, chitinase, phytase and alkaline phosphatase. Isolates belonged to diverse genus like Enterobacter, Acinetobacter, Erwinia, Pseudomonas, Rhizobium, Sinorhizobium, Ensifer, Klebsiella, etc. Most isolates solubilized TCP and RP along with the lowering of media pH, indicating acidification to be the chief mechanism behind this solubilization. However, lowering of media pH and P release decreased by 32-100% when media was supplemented with succinate, a major component of plant root exudates indicating succinate mediated repression of P solubilization. Maximum TCP and RP solubilization with P release of 850µg/mL and 2088µg/mL was obtained with lowering of media pH up to 2.8 and 3.3 for isolate E43 and PSB1 respectively. This pH drop changed to 4.4 and 4.8 with 80% and 87% decrease in P solubilization in the presence of succinate. Maximum 246µg/mL indole 3-acetic acid production in Lh3, 44.8U/mL chitinase activity in MB3, 11.3U/mL phytase activity in I91 and 9.4U/mL alkaline phosphatase activity in SM1 were also obtained. Most isolates showed multiple PGP traits which resulted in significant plant growth promotion of chick pea plants. Present study shows repression of P solubilization by succinate for various bacterial groups which might be one of the reasons why phosphate solubilizing bacteria which perform well in vitro often fail in vivo. Studying this repression mechanism might be critical in understanding the in vivo efficacy.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Fosfatos/metabolismo , Desenvolvimento Vegetal , Ácido Succínico/metabolismo , 6-Fitase/metabolismo , Fosfatase Alcalina/metabolismo , Amônia/metabolismo , Fosfatos de Cálcio/metabolismo , Quitinases/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Solubilidade
20.
World J Microbiol Biotechnol ; 33(2): 41, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120312

RESUMO

Microorganisms play a significant role in biogeochemical cycles, especially in the benthic and pelagic ecosystems. Role of environmental parameters in regulating the diversity, distribution and physiology of these microorganisms in tropical marine environment is not well understood. In this study, we have identified dinitrogen (N2) fixing bacterial communities in the sediments by constructing clone libraries of nitrogenase (nifH) gene from four different stations in the Cochin estuary, along the southeastern Arabian Sea. N2 fixing bacterial clones revealed that over 20 putative diazotrophs belong to alpha-, beta-, gamma-, delta- and epsilon- proteobacteria and firmicutes. Predominant genera among these were Bradyrhizobium sp. (α-proteobacteria), Dechloromonas sp. (ß-proteobacteria); Azotobactor sp., Teredinibacter sp., Methylobacter sp., Rheinheimera sp. and Marinobacterium sp. (γ-proteobacteria); Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio sp. (δ -proteobacteria); Arcobacter sp. and Sulfurospirillum sp. (ε-proteobacteria). Nostoc sp. was solely identified among the cyanobacterial phylotype. Nitrogen fixing Sulfate reducing bacteria (SRBs) such as Desulfobulbus sp., Desulfovibrio sp., Desulfuromonas sp., Desulfosporosinus sp., Desulfobacter sp., were also observed in the study. Most of the bacterial nifH sequences revealed that the identities of N2 fixing bacteria were less than 95% similar to that available in the GenBank database, which suggested that the sequences were of novel N2 fixing microorganisms. Shannon-Weiner diversity index of nifH gene ranged from 2.95 to 3.61, indicating an inflated diversity of N2 fixing bacteria. Canonical correspondence analysis (CCA) implied positive correlation among nifH diversity, N2 fixation rate and other environmental variables.


Assuntos
Sedimentos Geológicos/microbiologia , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Oxirredutases/genética , Proteínas de Bactérias/genética , Biodiversidade , Biblioteca Gênica , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , Clima Tropical , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA