Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36992345

RESUMO

For 20 years, the intricacies in bacteriophage Mu replication and its regulation were elucidated in collaboration between Ariane Toussaint and her co-workers in the Laboratory of Genetics at the Université Libre de Bruxelles, and the groups of Martin Pato and N. Patrick Higgins in the US. Here, to honor Martin Pato's scientific passion and rigor, we tell the history of this long-term sharing of results, ideas and experiments between the three groups, and Martin's final discovery of a very unexpected step in the initiation of Mu replication, the joining of Mu DNA ends separated by 38 kB with the assistance of the host DNA gyrase.


Assuntos
Bacteriófago mu , Humanos , Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Replicação Viral/genética , Sequência de Bases , DNA Girase/genética , DNA Girase/metabolismo , Sítios de Ligação/genética , Replicação do DNA , DNA Viral/genética
2.
mBio ; 13(3): e0081322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35471081

RESUMO

Bacteriophage Mu is a paradigm coliphage studied mainly because of its use of transposition for genome replication. However, in extensive nonsense mutant screens, only one lysis gene has been identified, the endolysin gp22. This is surprising because in Gram-negative hosts, lysis by Caudovirales phages has been shown to require proteins which disrupt all three layers of the cell envelope. Usually this involves a holin, an endolysin, and a spanin targeting the cytoplasmic membrane, peptidoglycan (PG), and outer membrane (OM), respectively, with the holin determining the timing of lysis initiation. Here, we demonstrate that gp22 is a signal-anchor-release (SAR) endolysin and identify gp23 and gp23.1 as two-component spanin subunits. However, we find that Mu lacks a holin and instead encodes a membrane-tethered cytoplasmic protein, gp25, which is required for the release of the SAR endolysin. Mutational analysis showed that this dependence on gp25 is conferred by lysine residues at positions 6 and 7 of the short cytoplasmic domain of gp22. gp25, which we designate as a releasin, also facilitates the release of SAR endolysins from other phages. Moreover, the entire length of gp25, including its N-terminal transmembrane domain, belongs to a protein family, DUF2730, found in many Mu-like phages, including those with cytoplasmic endolysins. These results are discussed in terms of models for the evolution and mechanism of releasin function and a rationale for Mu lysis without holin control. IMPORTANCE Host cell lysis is the terminal event of the bacteriophage infection cycle. In Gram-negative hosts, lysis requires proteins that disrupt each of the three cell envelope components, only one of which has been identified in Mu: the endolysin gp22. We show that gp22 can be characterized as a SAR endolysin, a muralytic enzyme that activates upon release from the membrane to degrade the cell wall. Furthermore, we identify genes 23 and 23.1 as spanin subunits used for outer membrane disruption. Significantly, we demonstrate that Mu is the first known Caudovirales phage to lack a holin, a protein that disrupts the inner membrane and is traditionally known to release endolysins. In its stead, we report the discovery of a lysis protein, termed the releasin, which Mu uses for SAR endolysin release. This is an example of a system where the dynamic membrane localization of one protein is controlled by a secondary protein.


Assuntos
Bacteriófago mu , Bacteriófagos , Bacteriófago mu/metabolismo , Bacteriófagos/fisiologia , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Membrana , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(50): E11614-E11622, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487222

RESUMO

The Gam protein of transposable phage Mu is an ortholog of eukaryotic and bacterial Ku proteins, which carry out nonhomologous DNA end joining (NHEJ) with the help of dedicated ATP-dependent ligases. Many bacteria carry Gam homologs associated with either complete or defective Mu-like prophages, but the role of Gam in the life cycle of Mu or in bacteria is unknown. Here, we show that MuGam is part of a two-component bacterial NHEJ DNA repair system. Ensemble and single-molecule experiments reveal that MuGam binds to DNA ends, slows the progress of RecBCD exonuclease, promotes binding of NAD+-dependent Escherichia coli ligase A, and stimulates ligation. In vivo, Gam equally promotes both precise and imprecise joining of restriction enzyme-digested linear plasmid DNA, as well as of a double-strand break (DSB) at an engineered I-SceI site in the chromosome. Cell survival after the induced DSB is specific to the stationary phase. In long-term growth competition experiments, particularly upon treatment with a clastogen, the presence of gam in a Mu lysogen confers a distinct fitness advantage. We also show that the role of Gam in the life of phage Mu is related not to transposition but to protection of genomic Mu copies from RecBCD when viral DNA packaging begins. Taken together, our data show that MuGam provides bacteria with an NHEJ system and suggest that the resulting fitness advantage is a reason that bacteria continue to retain the gam gene in the absence of an intact prophage.


Assuntos
Bacteriófago mu/metabolismo , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Virais/metabolismo , Bacteriófago mu/genética , Bacteriófago mu/crescimento & desenvolvimento , DNA Ligases/química , Empacotamento do DNA/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Exodesoxirribonuclease V/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína , Proteínas Virais/química
4.
DNA Repair (Amst) ; 72: 86-92, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268364

RESUMO

The N protein of phage Mu was indicated from studies in Escherichia coli to hold linear Mu chromosomes in a circular conformation by non-covalent association, and thus suggested potentially to bind DNA double-stranded ends. Because of its role in association with linear Mu DNA, we tested whether fluorescent-protein fusions to N might provide a useful tool for labeling DNA damage including double-strand break (DSB) ends in single cells. We compared N-GFP with a biochemically well documented DSB-end binding protein, the Gam protein of phage Mu, also fused to GFP. We find that N-GFP produced in live E. coli forms foci in response to DNA damage induced by radiomimetic drug phleomycin, indicating that it labels damaged DNA. N-GFP also labels specific DSBs created enzymatically by I-SceI double-strand endonuclease, and by X-rays, with the numbers of foci corresponding with the numbers of DSBs generated, indicating DSB labeling. However, whereas N-GFP forms about half as many foci as GamGFP with phleomycin, its labeling of I-SceI- and X-ray-induced DSBs is far less efficient than that of GamGFP. The data imply that N-GFP binds and labels DNA damage including DSBs, but may additionally label phleomycin-induced non-DSB damage, with which DSB-specific GamGFP does not interact. The data indicate that N-GFP labels DNA damage, and may be useful for general, not DSB-specific, DNA-damage detection.


Assuntos
Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Dano ao DNA , Corantes Fluorescentes/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Quebras de DNA de Cadeia Dupla , Escherichia coli/citologia , Exonucleases/metabolismo , Fleomicinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(36): 10174-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27555589

RESUMO

Contractile phage tails are powerful cell puncturing nanomachines that have been co-opted by bacteria for self-defense against both bacteria and eukaryotic cells. The tail of phage T4 has long served as the paradigm for understanding contractile tail-like systems despite its greater complexity compared with other contractile-tailed phages. Here, we present a detailed investigation of the assembly of a "simple" contractile-tailed phage baseplate, that of Escherichia coli phage Mu. By coexpressing various combinations of putative Mu baseplate proteins, we defined the required components of this baseplate and delineated its assembly pathway. We show that the Mu baseplate is constructed through the independent assembly of wedges that are organized around a central hub complex. The Mu wedges are comprised of only three protein subunits rather than the seven found in the equivalent structure in T4. Through extensive bioinformatic analyses, we found that homologs of the essential components of the Mu baseplate can be identified in the majority of contractile-tailed phages and prophages. No T4-like prophages were identified. The conserved simple baseplate components were also found in contractile tail-derived bacterial apparatuses, such as type VI secretion systems, Photorhabdus virulence cassettes, and R-type tailocins. Our work highlights the evolutionary connections and similarities in the biochemical behavior of phage Mu wedge components and the TssF and TssG proteins of the type VI secretion system. In addition, we demonstrate the importance of the Mu baseplate as a model system for understanding bacterial phage tail-derived systems.


Assuntos
Bacteriófago mu/genética , Sistemas de Secreção Tipo VI/genética , Proteínas da Cauda Viral/genética , Vírion/genética , Montagem de Vírus/genética , Bacillus subtilis/virologia , Bacteriófago P2/genética , Bacteriófago P2/metabolismo , Bacteriófago P2/ultraestrutura , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Bacteriófago mu/metabolismo , Bacteriófago mu/ultraestrutura , Biologia Computacional , Escherichia coli/virologia , Expressão Gênica , Sintenia , Sistemas de Secreção Tipo VI/metabolismo , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
6.
PLoS One ; 10(4): e0124053, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25902138

RESUMO

S. flexneri is the leading cause of bacillary dysentery in the developing countries. Several temperate phages originating from this host have been characterised. However, all S. flexneri phages known to date are lambdoid phages, which have the ability to confer the O-antigen modification of their host. In this study, we report the isolation and characterisation of a novel Mu-like phage from a serotype 4a strain of S. flexneri. The genome of phage SfMu is composed of 37,146 bp and is predicted to contain 55 open reading frames (orfs). Comparative genome analysis of phage SfMu with Mu and other Mu-like phages revealed that SfMu is closely related to phage Mu, sharing >90% identity with majority of its proteins. Moreover, investigation of phage SfMu receptor on the surface of the host cell revealed that the O-antigen of the host serves as the receptor for the adsorption of phage SfMu. This study also demonstrates pervasiveness of SfMu phage in S. flexneri, by identifying complete SfMu prophage strains of serotype X and Y, and remnants of SfMu in strains belonging to 4 other serotypes, thereby indicating that transposable phages in S. flexneri are not uncommon. The findings of this study contribute an advance in our current knowledge of S. flexneri phages and will also play a key role in understanding the evolution of S. flexneri.


Assuntos
Bacteriófago mu/genética , DNA Viral/genética , Genoma Viral , Shigella flexneri/virologia , Proteínas Virais/genética , Bacteriófago mu/metabolismo , Mapeamento Cromossômico , DNA Viral/metabolismo , Tamanho do Genoma , Antígenos O/química , Antígenos O/metabolismo , Fases de Leitura Aberta , Receptores Virais/química , Receptores Virais/metabolismo , Análise de Sequência de DNA , Sorotipagem , Shigella flexneri/metabolismo , Proteínas Virais/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(39): 14112-7, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25197059

RESUMO

The genome of transposable phage Mu is packaged as a linear segment, flanked by several hundred base pairs of non-Mu DNA. The linear ends are held together and protected from nucleases by the phage N protein. After transposition into the Escherichia coli chromosome, the flanking DNA (FD) is degraded, and the 5-bp gaps left in the target are repaired to generate a simple Mu insertion. Our study provides insights into this repair pathway. The data suggest that the first event in repair is removal of the FD by the RecBCD exonuclease, whose entry past the N-protein block is licensed by the transpososome. In vitro experiments reveal that, when RecBCD is allowed entry into the FD, it degrades this DNA until it arrives at the transpososome, which presents a barrier for further RecBCD movement. RecBCD action is required for stimulating endonucleolytic cleavage within the transpososome-protected DNA, leaving 4-nt flanks outside both Mu ends. This end product of collaboration between the transpososome and RecBCD resembles the intermediate products of Tn7 and retroviral and retrotransposon transposition, and may hint at a common gap-repair mechanism in these diverse transposons.


Assuntos
Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Elementos de DNA Transponíveis/genética , Exodesoxirribonuclease V/metabolismo , Substituição de Aminoácidos , Reparo do DNA , DNA Viral/genética , DNA Viral/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/virologia , Células HEK293 , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Transposases/química , Transposases/genética , Transposases/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Biochem Soc Trans ; 41(2): 601-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514161

RESUMO

Difference topology is an experimental technique that can be used to unveil the topological structure adopted by two or more DNA segments in a stable protein-DNA complex. Difference topology has also been used to detect intermediates in a reaction pathway and to investigate the role of DNA supercoiling. In the present article, we review difference topology as applied to the Mu transpososome. The tools discussed can be applied to any stable nucleoprotein complex.


Assuntos
Bacteriófago mu/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Estabilidade Proteica , Transposases/química , Transposases/metabolismo
9.
Biochim Biophys Acta ; 1834(1): 284-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22922659

RESUMO

Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92-Gln197) at 1.5Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.


Assuntos
Bacteriófago mu/química , Proteínas do Envelope Viral/química , Bacteriófago mu/metabolismo , Cálcio/química , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/virologia , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/virologia , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
10.
J Biol Chem ; 286(41): 35852-35862, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21859715

RESUMO

Gene expression during lytic development of bacteriophage Mu occurs in three phases: early, middle, and late. Transcription from the middle promoter, P(m), requires the phage-encoded activator protein Mor and the bacterial RNA polymerase. The middle promoter has a -10 hexamer, but no -35 hexamer. Instead P(m) has a hyphenated inverted repeat that serves as the Mor binding site overlapping the position of the missing -35 element. Mor binds to this site as a dimer and activates transcription by recruiting RNA polymerase. The crystal structure of the His-Mor dimer revealed three structural elements: an N-terminal dimerization domain, a C-terminal helix-turn-helix DNA-binding domain, and a ß-strand linker between the two domains. We predicted that the highly conserved residues in and flanking the ß-strand would be essential for the conformational flexibility and DNA minor groove binding by Mor. To test this hypothesis, we carried out single codon-specific mutagenesis with degenerate oligonucleotides. The amino acid substitutions were identified by DNA sequencing. The mutant proteins were characterized for their overexpression, solubility, DNA binding, and transcription activation. This analysis revealed that the Gly-Gly motif formed by Gly-65 and Gly-66 and the ß-strand side chain of Tyr-70 are crucial for DNA binding by His-tagged Mor. Mutant proteins with substitutions at Gly-74 retained partial activity. Treatment with the minor groove- and GC-specific chemical chromomycin A(3) demonstrated that chromomycin prevented His-Mor binding but could not disrupt a pre-formed His-Mor·DNA complex, consistent with the prediction that Mor interacts with the minor groove of the GC-rich spacer in the Mor binding site.


Assuntos
Bacteriófago mu/química , Proteínas de Ciclo Celular/química , DNA Viral/química , Proteínas de Drosophila/química , Elementos de Resposta , Substituição de Aminoácidos , Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromomicina A3/química , Cristalografia por Raios X , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/virologia , Sequências Hélice-Volta-Hélice , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína
11.
J Biosci ; 36(4): 587-601, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21857106

RESUMO

Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.


Assuntos
Bacteriófago mu/genética , Cromossomos/genética , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Bacteriófago mu/metabolismo , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Cromossomos/química , DNA/química , DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/deficiência , Fator Proteico para Inversão de Estimulação/genética , Dispositivos Lab-On-A-Chip , Mutagênese Insercional , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , Ligação Proteica/genética , Deleção de Sequência
12.
Mol Microbiol ; 80(5): 1169-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21435034

RESUMO

Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the ß' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the ß' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the ß' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.


Assuntos
Bacteriófago mu/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Regiões Promotoras Genéticas , Ativação Transcricional , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Bacteriófago mu/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Mutação , Ligação Proteica , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas Virais/genética
13.
Proc Natl Acad Sci U S A ; 108(2): 498-503, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187418

RESUMO

Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of amino acid residues that mediate resolvase and invertase DNA sequence specificity. Using saturation mutagenesis and iterative rounds of positive antibiotic selection, we identified extensively redesigned and highly convergent resolvase and invertase populations in the context of engineered zinc-finger recombinase (ZFR) fusion proteins. Reprogrammed variants selectively catalyzed recombination of nonnative DNA sequences > 10,000-fold more effectively than their parental enzymes. Alanine-scanning mutagenesis revealed the molecular basis of resolvase and invertase DNA sequence specificity. When used as rationally designed ZFR heterodimers, the reprogrammed enzyme variants site-specifically modified unnatural and asymmetric DNA sequences. Early studies on the directed evolution of serine recombinase DNA sequence specificity produced enzymes with relaxed substrate specificity as a result of randomly incorporated mutations. In the current study, we focused our mutagenesis exclusively on DNA determinants, leading to redesigned enzymes that remained highly specific and directed transgene integration into the human genome with > 80% accuracy. These results demonstrate that unique resolvase and invertase derivatives can be developed to site-specifically modify the human genome in the context of zinc-finger recombinase fusion proteins.


Assuntos
DNA Nucleotidiltransferases/genética , Recombinases/genética , Serina/química , Transposon Resolvases/genética , Sequência de Aminoácidos , Bacteriófago mu/metabolismo , Dimerização , Escherichia coli/enzimologia , Marcação de Genes , Genoma Humano , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Engenharia de Proteínas/métodos , Estrutura Secundária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transgenes
14.
J Bacteriol ; 192(24): 6418-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935093

RESUMO

Random transposon mutagenesis is the strategy of choice for associating a phenotype with its unknown genetic determinants. It is generally performed by mobilization of a conditionally replicating vector delivering transposons to recipient cells using broad-host-range RP4 conjugative machinery carried by the donor strain. In the present study, we demonstrate that bacteriophage Mu, which was deliberately introduced during the original construction of the widely used donor strains SM10 λpir and S17-1 λpir, is silently transferred to Escherichia coli recipient cells at high frequency, both by hfr and by release of Mu particles by the donor strain. Our findings suggest that bacteriophage Mu could have contaminated many random-mutagenesis experiments performed on Mu-sensitive species with these popular donor strains, leading to potential misinterpretation of the transposon mutant phenotype and therefore perturbing analysis of mutant screens. To circumvent this problem, we precisely mapped Mu insertions in SM10 λpir and S17-1 λpir and constructed a new Mu-free donor strain, MFDpir, harboring stable hfr-deficient RP4 conjugative functions and sustaining replication of Π-dependent suicide vectors. This strain can therefore be used with most of the available transposon-delivering plasmids and should enable more efficient and easy-to-analyze mutant hunts in E. coli and other Mu-sensitive RP4 host bacteria.


Assuntos
Bacteriófago mu/genética , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Mutagênese Insercional/métodos , Plasmídeos/genética , Bacteriófago mu/metabolismo , Mapeamento Cromossômico , Cromossomos Bacterianos , Conjugação Genética , DNA Bacteriano/genética , Escherichia coli/metabolismo
15.
Mol Cell ; 39(1): 48-58, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603074

RESUMO

DNA transposons integrate into host chromosomes with limited target sequence specificity. Without mechanisms to avoid insertion into themselves, transposons risk self-destruction. Phage Mu avoids this problem by transposition immunity, involving MuA-transposase and MuB ATP-dependent DNA-binding protein. MuB-bound DNA acts as an efficient transposition target, but MuA clusters bound to Mu DNA ends activate the MuB-ATPase and dissociate MuB from their neighborhood before target site commitment, making the regions near Mu ends a poor target. This MuA-cluster-MuB interaction requires formation of DNA loops between the MuA- and the MuB-bound DNA sites. At early times, MuB clusters are disassembled via loops with smaller average size, and at later times, MuA clusters find distantly located MuB clusters by forming loops with larger average sizes. We demonstrate that iterative loop formation/disruption cycles with intervening diffusional steps result in larger DNA loops, leading to preferential insertion of the transposon at sites distant from the transposon ends.


Assuntos
Bacteriófago mu/metabolismo , Elementos de DNA Transponíveis/genética , DNA Viral/metabolismo , Modelos Biológicos , Movimento (Física) , Proteínas Virais/metabolismo , Bacteriófago mu/enzimologia , DNA Viral/química , Difusão , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Conformação de Ácido Nucleico , Ligação Proteica , Transposases/metabolismo
16.
Biochim Biophys Acta ; 1804(9): 1738-42, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20478417

RESUMO

The Mu phage virion contains tail-spike proteins beneath the baseplate, which it uses to adsorb to the outer membrane of Escherichia coli during the infection process. The tail spikes are composed of gene product 45 (gp45), which contains 197 amino acid residues. In this study, we purified and characterized both the full-length and the C-terminal domains of recombinant gp45 to identify the functional and structural domains. Limited proteolysis resulted in a Ser64-Gln197 sequence, which was composed of a stable C-terminal domain. Analytical ultracentrifugation of the recombinant C-terminal domain (gp45-C) indicated that the molecular weight of gp45-C was about 58 kDa and formed a trimeric protomer in solution. Coprecipitation experiments and a quartz crystal microbalance (QCM) demonstrated that gp45-C irreversibly binds to the E. coli membrane. These results indicate that gp45 shows behaviors similar to tail-spike proteins of other phages; however, gp45 did not show significant sequence homology with the other phage tail-spike structures that have been identified.


Assuntos
Bacteriófago mu/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas da Cauda Viral/metabolismo , Bacteriófago mu/crescimento & desenvolvimento , Escherichia coli/genética , Glicosídeo Hidrolases , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/isolamento & purificação
17.
Proc Natl Acad Sci U S A ; 107(22): 10014-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20167799

RESUMO

Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA from a previous host that is still attached to the ends of the incoming Mu genome. We have discovered that the cryptic endonuclease activity reported for the isolated C-terminal domain of the transposase MuA [Wu Z, Chaconas G (1995) A novel DNA binding and nuclease activity in domain III of Mu transposase: Evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835-3843], which is not observed in the full-length protein or in the assembled transpososome in vitro, is required in vivo for removal of the attached host DNA or "5'flap" after the infecting Mu genome has integrated into the E. coli chromosome. Efficient flap removal also requires the host protein ClpX, which is known to interact with the C-terminus of MuA to remodel the transpososome for replication. We hypothesize that ClpX constitutes part of a highly regulated mechanism that unmasks the cryptic nuclease activity of MuA specifically in the repair pathway.


Assuntos
Bacteriófago mu/metabolismo , Reparo do DNA/fisiologia , Endonucleases/metabolismo , Transposases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacteriófago mu/genética , Bacteriófago mu/fisiologia , Replicação do DNA/fisiologia , Endonucleases/química , Endonucleases/genética , Endopeptidase Clp/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/fisiologia , Escherichia coli K12/virologia , Proteínas de Escherichia coli/metabolismo , Lisogenia , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transposases/química , Transposases/genética , Integração Viral/fisiologia , Replicação Viral/fisiologia
18.
DNA Repair (Amst) ; 9(3): 202-9, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20097140

RESUMO

PriA, a 3'-->5' superfamily 2 DNA helicase, acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. The ability of PriA to initiate replication at stalled forked structures ensures complete genome replication and helps to protect the cell from illegitimate recombination events. This review focuses on the activities of PriA and its role in replication fork assembly and maintaining genomic integrity.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Bacteriófago mu/metabolismo , Instabilidade Genômica , Humanos
19.
Biochemistry ; 48(11): 2347-54, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19170593

RESUMO

Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (P(mom)) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg(2+)-dependent fashion. Mg(2+)-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg(2+), to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E(26)X(10)D(37)X(2)D(40)) present toward the N-terminus of the protein are found to be important for Mg(2+) ion binding. Mutations in these residues lead to altered Mg(2+)-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg(2+) is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.


Assuntos
Bacteriófago mu/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Magnésio/química , Transativadores/química , Transativadores/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago mu/genética , Bacteriófago mu/metabolismo , DNA/genética , DNA/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Ativação Transcricional
20.
J Mol Biol ; 380(4): 598-607, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18556020

RESUMO

Phage Mu transposes promiscuously, employing protein MuB for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into hot and cold Mu targets within the Escherichia coli genome. Although higher binding of MuB to select hot versus cold genes was seen in vivo, the hot genes had an average A/T content and were less preferred targets in vitro, whereas cold genes had higher A/T values and were more efficient targets in vitro. These data suggest that A/T-rich regions are unavailable for MuB binding, and that A/T content is not a good predictor of Mu behavior in vivo. Insertion patterns within two hot genes in vivo could be superimposed on those obtained in vitro in reactions employing purified MuA transposase and MuB, ruling out the contribution of a special DNA structure or additional host factors to the hot behavior of these genes. While A/T-rich DNA is a preferred target in vitro, a fragment made up exclusively of A/T was an extremely poor target. A continuous MuB filament assembled along the A/T region likely protects it against the action of MuA. Our results suggest that MuB binds E. coli DNA in an interspersed manner utilizing local A/T richness, and facilitates capture of these bound regions by the transpososome. Actual integration events are then directed to sites that are in proximity to MuB filaments but are themselves free of MuB.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Mutagênese Insercional , Proteínas Virais/metabolismo , Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Composição de Bases , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Escherichia coli/virologia , Dados de Sequência Molecular , Transposases/genética , Transposases/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA