Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Methods Mol Biol ; 2839: 113-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008251

RESUMO

Traditional studies of cellular metabolism have relied on the use of radioisotopes. These have clear disadvantages associated with safety and waste generation. Furthermore, detection of the labeled species by scintillation counting provides only a quantification of its presence or absence. The use of stable isotopes, by contrast, allows the application of powerful, orthogonal spectroscopic approaches such as nuclear magnetic resonance spectroscopy (NMR) and various mass spectrometric methods. Using stable isotope labeling to study heme metabolism requires integrating methods for (a) generating the heme in labeled forms, (b) cultivating and quantifying the organism of choice in chemically defined media, to which labeled compounds can be added, (c) recovering cellular components and/or spent growth media, and (d) analyzing these materials for the labeled species using spectroscopic and mass spectrometric methods. These methods are summarized here in the context of Bacteroides thetaiotaomicron, a generally nonpathogenic anaerobe and heme auxotroph.


Assuntos
Bacteroides thetaiotaomicron , Heme , Espectrometria de Massas , Heme/metabolismo , Espectrometria de Massas/métodos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética/métodos , Marcação por Isótopo/métodos , Meios de Cultura/química
2.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879612

RESUMO

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Assuntos
Proteínas de Bactérias , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Polissacarídeos , Polissacarídeos/metabolismo , Humanos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Manose/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Família Multigênica
3.
mBio ; 15(7): e0122024, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842315

RESUMO

Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE: Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Fosforilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Ligação Proteica , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Bacteroides/genética , Bacteroides/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Histidina Quinase/metabolismo , Histidina Quinase/genética , Histidina Quinase/química , Domínios Proteicos , Transdução de Sinais
4.
Cell Host Microbe ; 32(6): 1025-1036.e5, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38795710

RESUMO

The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.


Assuntos
Bacteroides thetaiotaomicron , Colo , Microbioma Gastrointestinal , Lipidômica , Animais , Camundongos , Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/fisiologia , Colo/microbiologia , Colo/metabolismo , Lipídeos/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolismo dos Lipídeos , Vida Livre de Germes , Organismos Livres de Patógenos Específicos , Ácidos Fosfatídicos/metabolismo , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Feminino
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502145

RESUMO

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Assuntos
Bacteroides thetaiotaomicron , Colite , Faecalibacterium prausnitzii , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Animais , Colite/terapia , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Camundongos , Masculino , Humanos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Adulto , Feminino , Fezes/microbiologia , Modelos Animais de Doenças , Pessoa de Meia-Idade
7.
Nat Microbiol ; 9(4): 1130-1144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528147

RESUMO

Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/genética , Transcriptoma , RNA , Inibidores da Síntese de Proteínas , Tetraciclinas
8.
mBio ; 15(5): e0348823, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534200

RESUMO

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Assuntos
Proteínas de Bactérias , Bacteroides thetaiotaomicron , Bile , Biofilmes , Magnésio , Biofilmes/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/fisiologia , Bacteroides thetaiotaomicron/metabolismo , Magnésio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bile/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica
9.
Biomed Pharmacother ; 172: 116302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387133

RESUMO

Ulcerative colitis (UC) represents an inflammatory disease characterized by fluctuations in severity, posing substantial challenges in treatment. The gut microbiota plays a pivotal role in the pathogenesis of UC. This study sought to identify drugs specifically targeting the gut microbiota to mitigate UC. We initiated a meta-analysis on gut microbiota in UC patients to identify UC-associated bacterial strains. Subsequently, we screened 164 dietary herbal medicines in vitro to identify potential prebiotics for the UC-associated bacterium, Bacteroides thetaiotaomicron. The DSS-induced colitis mouse model was utilized to evaluate the anti-colitis efficacy of the identified dietary herbal medicine. Full-length 16 S rRNA amplicon sequencing was employed to observe changes in gut microbiota following dietary herbal medicine intervention. The relative abundance of Bacteroides was notably diminished in UC patients compared to their healthy counterparts. B. thetaiotaomicron exhibited an inverse relationship with UC symptoms, indicating its potential as an anti-colitis agent. In vitro assessments revealed that H. Herba significantly bolstered the proliferation of B. thetaiotaomicron. Further experiments showed that treating DSS-induced mice with an aqueous extract of H. Herba considerably alleviated colitis indicators such as weight loss, colon shortening, disease activity score (DAI), and systemic inflammation. Microbial analysis revealed B. thetaiotaomicron as the sole bacterium substantially augmented by H. Herba in vivo. Overall H. Herba emerges as a promising prebiotic for B. thetaiotaomicron, offering significant anti-colitis benefits. Employing a gut microbiota-centric approach proves valuable in the quest for drug discovery.This study provides a new paradigm for drug discovery that targets the gut microbiota to treat UC.


Assuntos
Bacteroides thetaiotaomicron , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bacteroides , Prebióticos
10.
Proc Natl Acad Sci U S A ; 121(10): e2321910121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422018

RESUMO

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/genética , Fator sigma , Filogenia
11.
mBio ; 15(3): e0259923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376161

RESUMO

The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE: Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Peso Molecular , Bacteroides/metabolismo , Dextranos/metabolismo , Trato Gastrointestinal/microbiologia , Polissacarídeos/metabolismo , Amido
12.
Pharmacol Res ; 200: 107071, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218354

RESUMO

Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.


Assuntos
Bacteroides thetaiotaomicron , Colite Ulcerativa , Colite , Exossomos , Alho , Microbioma Gastrointestinal , Camundongos , Animais , Exossomos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
13.
Proc Natl Acad Sci U S A ; 121(6): e2311323121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294941

RESUMO

Microbiota-centric interventions are limited by our incomplete understanding of the gene functions of many of its constituent species. This applies in particular to small RNAs (sRNAs), which are emerging as important regulators in microbiota species yet tend to be missed by traditional functional genomics approaches. Here, we establish CRISPR interference (CRISPRi) in the abundant microbiota member Bacteroides thetaiotaomicron for genome-wide sRNA screens. By assessing the abundance of different protospacer-adjacent motifs, we identify the Prevotella bryantii B14 Cas12a as a suitable nuclease for CRISPR screens in these bacteria and generate an inducible Cas12a expression system. Using a luciferase reporter strain, we infer guide design rules and use this knowledge to assemble a computational pipeline for automated gRNA design. By subjecting the resulting guide library to a phenotypic screen, we uncover the sRNA BatR to increase susceptibility to bile salts through the regulation of genes involved in Bacteroides cell surface structure. Our study lays the groundwork for unlocking the genetic potential of these major human gut mutualists and, more generally, for identifying hidden functions of bacterial sRNAs.


Assuntos
Bacteroides thetaiotaomicron , Pequeno RNA não Traduzido , Humanos , Bacteroides thetaiotaomicron/genética , RNA Guia de Sistemas CRISPR-Cas , Bile , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
14.
ACS Synth Biol ; 13(2): 648-657, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38224571

RESUMO

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Sinais Direcionadores de Proteínas/genética , Plasmídeos/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Transporte Proteico
15.
J Extracell Vesicles ; 13(1): e12406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38240185

RESUMO

Bacterial extracellular vesicles (BEVs) contribute to stress responses, quorum sensing, biofilm formation and interspecies and interkingdom communication. However, the factors that regulate their release and heterogeneity are not well understood. We set out to investigate these factors in the common gut commensal Bacteroides thetaiotaomicron by studying BEV release throughout their growth cycle. Utilising a range of methods, we demonstrate that vesicles released at different stages of growth have significantly different composition, with early vesicles enriched in specifically released outer membrane vesicles (OMVs) containing a larger proportion of lipoproteins, while late phase BEVs primarily contain lytic vesicles with enrichment of cytoplasmic proteins. Furthermore, we demonstrate that lipoproteins containing a negatively charged signal peptide are preferentially incorporated in OMVs. We use this observation to predict all Bacteroides thetaiotaomicron OMV enriched lipoproteins and analyse their function. Overall, our findings highlight the need to understand media composition and BEV release dynamics prior to functional characterisation and define the theoretical functional capacity of Bacteroides thetaiotaomicron OMVs.


Assuntos
Bacteroides thetaiotaomicron , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Lipoproteínas/análise
16.
Gut Microbes ; 16(1): 2304159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277137

RESUMO

Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.


Assuntos
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Camundongos Endogâmicos C57BL
17.
Microbiol Spectr ; 12(1): e0357623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018975

RESUMO

IMPORTANCE: Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genética , Transcriptoma , Ácidos e Sais Biliares , Bacteroides/genética , Bacteroides/metabolismo , Polissacarídeos/metabolismo , Bactérias/genética
18.
Clin Res Hepatol Gastroenterol ; 48(2): 102276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158154

RESUMO

BACKGROUND: Studies have demonstrated that Bacteroides thetaiotaomicron (BT) has protective effect against colon inflammation in murine models. Macrophages play an important role in gut immunity. However, the specific mechanisms of BT on macrophage are still unelucidated. Thus, our study investigates the anti-inflammatory effect of BT and its heat-treated inactivated bacteria on experimental colitis and macrophages. METHODS: A dextran sulfate sodium (DSS)-induced acute colitis model with male C57BL/6 mice, BT (ATCC29148) strain, THP1 cell lines were used in this study. Live and heat-treated inactivated BT (IBT) solution (1 × 10^9cfu/ml) were intragastrically gavaged daily for 14 days. Colonic inflammation was determined by the disease activity index (DAI) score, colon length, histological score, and inflammatory factors. THP1 cells were induced towards M1, then treated with different concentrations of inactivated BT solution and p38 inhibitor. Western blotting, immunohistochemistry, immunofluorescence and qRT-PCR were performed to assess the levels of inflammatory cytokines and molecules of MAPK pathway including IL-6, TNF-α, IL-1ß, IL-22, p38 and phosphor-p38 expressions. Moreover, 16S rRNA sequencing of colitis murine fecal samples was applied to investigate the influence of supplementation of BT to the gut microbiota homeostasis. RESULTS: Both live and heat-treated inactivated BT decreased the DAI and histological scores as well as levels of inflammatory factors, particularly IL-6 while increasing IL-22 of DSS-induced colitis murine models. The cell experiments showed that inactivated BT downregulates IL-6 expression in THP1 via inhibiting p38 phosphorylation and affecting M1 polarization. Moreover, the 16S rRNA sequencing results showed that BT and IBT gavage could increase beta-diversity of gut flora in DSS-induced colitis mice. Furthermore, the significance test for differences between the groups showed that BT could increase Faecalebaculum, Lactobacillus and Bacteroides, while decreasing Akkermansia. CONCLUSION: In summary, our findings imply that BT and its heat-treated inactivated bacteria exert a protective effect by suppressing macrophage-induced IL-6 through the inhibition of p38 MAPK pathway and ameliorating intestinal gut dysbiosis in experimental colitis.


Assuntos
Bacteroides thetaiotaomicron , Colite , Masculino , Animais , Camundongos , RNA Ribossômico 16S/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/patologia , Inflamação , Modelos Animais de Doenças , Colo/patologia
19.
Sci Rep ; 13(1): 21192, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040895

RESUMO

The human gut microbiota is a complex ecosystem that affects a range of human physiology. In order to explore the dynamics of the human gut microbiota, we used a system of ordinary differential equations to model mathematically the biomass of three microorganism populations: Bacteroides thetaiotaomicron, Eubacterium rectale, and Methanobrevibacter smithii. Additionally, we modeled the concentrations of relevant nutrients necessary to sustain these populations over time. Our model highlights the interactions and the competition among these three species. These three microorganisms were specifically chosen due to the system's end product, butyrate, which is a short chain fatty acid that aids in developing and maintaining the intestinal barrier in the human gut. The basis of our mathematical model assumes the gut is structured such that bacteria and nutrients exit the gut at a rate proportional to its volume, the rate of volumetric flow, and the biomass or concentration of the particular population or nutrient. We performed global sensitivity analyses using Sobol' sensitivities to estimate the relative importance of model parameters on simulation results.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Eubacterium , Methanobrevibacter , Ecossistema , Bacteroides , Modelos Teóricos
20.
J Bacteriol ; 205(11): e0021823, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874167

RESUMO

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos/metabolismo , Bacteroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA