Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619983

RESUMO

The alphaproteobacterial order Hyphomicrobiales consists of 38 families comprising at least 152 validly published genera as of January 2024. The order Hyphomicrobiales was first described in 1957 and underwent important revisions in 2020. However, we show that several inconsistencies in the taxonomy of this order remain and we argue that there is a need for a consistent framework for defining families within the order. We propose a common genome-based framework for defining families within the order Hyphomicrobiales, suggesting that families represent monophyletic groups in core-genome phylogenies that share pairwise average amino acid identity values above ~75 % when calculated from a core set of 59 proteins. Applying this framework, we propose the formation of four new families and to reassign the genera Salaquimonas, Rhodoblastus, and Rhodoligotrophos into Salaquimonadaceae fam. nov., Rhodoblastaceae fam. nov., and Rhodoligotrophaceae fam. nov., respectively, and the genera Albibacter, Chenggangzhangella, Hansschlegelia, and Methylopila into Methylopilaceae fam. nov. We further propose to unify the families Bartonellaceae, Brucellaceae, Phyllobacteriaceae, and Notoacmeibacteraceae as Bartonellaceae; the families Segnochrobactraceae and Pseudoxanthobacteraceae as Segnochrobactraceae; the families Lichenihabitantaceae and Lichenibacteriaceae as Lichenihabitantaceae; and the families Breoghaniaceae and Stappiaceae as Stappiaceae. Lastly, we propose to reassign several genera to existing families. Specifically, we propose to reassign the genus Pseudohoeflea to the family Rhizobiaceae; the genera Oricola, Roseitalea, and Oceaniradius to the family Ahrensiaceae; the genus Limoniibacter to the emended family Bartonellaceae; the genus Faunimonas to the family Afifellaceae; and the genus Pseudochelatococcus to the family Chelatococcaceae. Our data also support the recent proposal to reassign the genus Prosthecomicrobium to the family Kaistiaceae.


Assuntos
Alphaproteobacteria , Beijerinckiaceae , Humanos , Filogenia , Análise de Sequência de DNA , Ácidos Graxos/química , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Beijerinckiaceae/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38530347

RESUMO

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232T, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232T grew at 25-50 °C (optimum, 37 °C), at pH 5.5-9.0 (optimum, pH 6.0) and tolerated NaCl concentrations up to 1.0 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU G07232T showed closest genetic affinity with Chelatococcus daeguensis K106T. The genomic features and taxonomic status of this strain were determined through whole-genome sequencing and a polyphasic approach. The predominant quinone of this strain was Q-10. Major cellular fatty acids comprised C19 : 0 cyclo ω8c and summed feature 8. The whole-genome length of strain SYSU G07232T was 4.02 Mbp, and the DNA G+C content was 69.26 mol%. The average nucleotide identity (ANIm ≤84.85 % and ANIb ≤76.08  %) and digital DNA-DNA hybridization (≤ 21.9 %) values between strain SYSU G07232T and the reference species were lower than the threshold values recommended for distinguishing novel prokaryotic species. Thus, based on the provided phenotypic, phylogenetic, and genetic data, it is proposed that strain SYSU G07232T (=KCTC 8141T=GDMCC 1.4178T) be designated as representing a novel species within the genus Chelatococcus, named Chelatococcus albus sp. nov.


Assuntos
Beijerinckiaceae , Fontes Termais , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , China , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias
3.
Plant Physiol Biochem ; 206: 108187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100889

RESUMO

The use of PGPR is widely accepted as a promising tool for a more sustainable agricultural production and improved plant abiotic stress resistance. This study tested the ability of PVr_9, a novel bacterial strain, homologous to Beijerinckia fluminensis, to increase salt stress tolerance in A. thaliana. In vitro plantlets inoculated with PVr_9 and treated with 150 mM NaCl showed a reduction in primary root growth inhibition compared to uninoculated ones, and a leaf area significantly less affected by salt. Furthermore, salt-stressed PVr_9-inoculated plants had low ROS and 8-oxo-dG, osmolytes, and ABA content along with a modulation in antioxidant enzymatic activities. A significant decrease in Na+ in the leaves and a corresponding increase in the roots were also observed in salt-stressed inoculated plants. SOS1, NHX1 genes involved in plant salt tolerance, were up-regulated in PVr_9-inoculated plants, while different MYB genes involved in salt stress signal response were down-regulated in both roots and shoots. Thus, PVr_9 was able to increase salt tolerance in A. thaliana, thereby suggesting a role in ion homeostasis by reducing salt stress rather than inhibiting total Na+ uptake. These results showed a possible molecular mechanism of crosstalk between PVr_9 and plant roots to enhance salt tolerance, and highlighted this bacterium as a promising PGPR for field applications on agronomical crops.


Assuntos
Arabidopsis , Beijerinckiaceae , Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Beijerinckiaceae/metabolismo , Agrobacterium tumefaciens , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
4.
Sci Rep ; 12(1): 20123, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418374

RESUMO

A growing body of literature have emphasized the effects of fertilization regimes on soil respiration and microbial community in the semiarid region, however, fertilization treatment effects on the soil CO2 emission, soil bacterial community, and their relationships from long-term experiments is lacking. In the present study, we investigated the effects of long-term fertilization regimes on soil bacterial community and thereafter on soil CO2 emission. A 9-year field experiment was conducted with five treatments, including no fertilizer (NA) and four fertilization treatments (inorganic fertilizer (CF), inorganic plus organic fertilizer (SC), organic fertilizer (SM), and maize straw (MS)) with equal N input as N 200 kg hm-2. The results indicated that CO2 emission was significantly increased under fertilization treatments compared to NA treatment. The bacterial abundance was higher under MS treatment than under NA treatment, while the Chao1 richness showed opposite trend. MS treatment significantly change soil bacterial community composition compared to NA treatment, the phyla (Alphaproteobacteria and Gammaproteobacteria) and potential keystone taxa (Nitrosomonadaceae and Beijerinckiaceae) were higher, while the Acidobacteriota was lower under MS treatment than under NA treatment. CO2 emission was positively correlated with the abundance of Alphaproteobacteria, Gammaproteobacteria, and keystone taxa, negatively correlated with these of Acidobacteriota. Random forest modeling and structural equation modeling determined soil organic carbon, total nitrogen, and the composition and network module III of the bacterial community are the main factors contribute to CO2 emission. In conclusion, our results suggest that the increased CO2 emission was affected by the varied of soil bacterial community composition derived from fertilization treatments, which was related to Alphaproteobacteria, Gammaproteobacteria, Acidobacteriota, and potential keystone taxa (Nitrosomonadaceae and Beijerinckiaceae), and highlight that the ecological importance of the bacterial community in mediating carbon cycling in the semiarid Loess Plateau.


Assuntos
Alphaproteobacteria , Beijerinckiaceae , Gammaproteobacteria , Solo , Dióxido de Carbono , Carbono , Fertilizantes , Acidobacteria , Zea mays , Fertilização
5.
Photosynth Res ; 154(1): 75-87, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066816

RESUMO

The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.


Assuntos
Carotenoides , Complexos de Proteínas Captadores de Luz , Bacterioclorofilas/metabolismo , Beijerinckiaceae , Carotenoides/metabolismo , Glucosídeos , Complexos de Proteínas Captadores de Luz/metabolismo
6.
Chemosphere ; 295: 133843, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122822

RESUMO

Environmental challenges like drought, salinity, heavy metals and pesticides directly/indirectly influence the environment and decreased the agricultural output. During its long developmental stages, cereal crops including wheat is exposed to a variety of abiotic/biotic stressors. Certain beneficial soil bacteria that can ameliorate environmental stresses can be exploited as crop growth promoters/enhancers under adverse situations. In this study, Beijerinckia fluminensis BFC-33 (accession no. MT672580) isolated from potato rhizosphere tolerated variousabiotic (drought, salinity, temperature, heavy metals, and fungicides) stresses. Strain BFC-33 demonstrated multifarious plant-growth-promoting (PGP) characteristics, such as the production of indole-3-acetic acid, P-solubilization, ACC deaminase, ammonia, siderophore, HCN, EPS, and extracellular enzymes. The antagonistic potential of BFC-33 against major fungal pathogens was ranked: Alternaria alternata (79.2%)>Rhizoctonia solani (69%)>Fusarium oxysporum (23.5%)>Ustilaginoidea virens (17%). Furthermore, bacterization of wheat seeds witha multi-stress-tolerant strain revealed B. fluminensis as a plant growth enhancer and biocontrol agent. For instance, increase in root length (cm) in BFC-33 inoculated wheat exposed to abiotic and biotic stresses at the seedling stage was ranked: B. fluminensis (24.2)>B. fluminensis + 100µgTBZLmL-1 (21.3) = B. fluminensis + 2%PEG (21.3)>B. fluminensis + 100 mM NaCl (19.7)>B. fluminensis + 100µgPbmL-1 (19) = B. fluminensis 100µgMNZBmL-1 (19)>B. fluminensis + A. alternata (17.4)>B. fluminensis + 100µgCdmL-1 (17)>B. fluminensis + F. oxysporum (13.4). In addition, increase in carotenoid accumulation (mg g-1FW) in the foliage of BFC-33 inoculated wheat exposed to fungal infection was ranked: BFC-33 (3.88)>BFC-33+ A. alternata (3.0)>BFC-33+ R. solani (2.78)>BFC-33+ F. oxysporum (2.44). Moreover, BFC-33 inoculation significantly (p ≤ 0.05) reduced stress-induced stressor molecules (proline and TBARS) and electrolyte leakage. Furthermore, B. fluminensis BFC-33 potentially enhanced the defense responses in wheat seedlings by increasing phenylalanine ammonia lyase (PAL), ß-1,3 glucanase, and polyphenol oxidase (PPO), which play a significant role in protecting plants from phytopathogens. Even so, by successfully establishing a product with the requisite effects under field settings, selecting multi-stress-tolerant and antagonistic plant growth promoting rhizobacteria (PGPRs) would be helpful to end-users. Future use of native multi-stress-tolerant bacteria as biocontrol agents in conjunction with existing drought, salinity, heavy metal, and pesticide tolerance might contribute to global food security.


Assuntos
Solo , Triticum , Bactérias , Beijerinckiaceae , Rizosfera
7.
Photochem Photobiol ; 98(1): 169-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293183

RESUMO

The interactions of chlorophyll (Chl) and bacteriochlorophyll (BChl) pigments with the polypeptides in photosynthetic light-harvesting proteins are responsible for controlling the absorption energy of (B)Chls in protein matrixes. The binding pocket of B800 BChl a in LH2 proteins, which are peripheral light-harvesting proteins in purple photosynthetic bacteria, is useful for studying such structure-property relationships. We report the reconstitution of Chl f, which has the formyl group at the 2-position, in the B800 cavity of LH2 from the purple bacterium Rhodoblastus acidophilus. The Qy absorption band of Chl f in the B800 cavity was shifted by 14 nm to longer wavelength compared to that of the corresponding five-coordinated monomer in acetone. This redshift was larger than that of Chl a and Chl b. Resonance Raman spectroscopy indicated hydrogen bonding between the 2-formyl group of Chl f and the LH2 polypeptide. These results suggest that this hydrogen bonding contributes to the Qy redshift of Chl f. Furthermore, the Qy redshift of Chl f in the B800 cavity was smaller than that of Chl d. This may have arisen from the different patterns of hydrogen bonding between Chl f and Chl d and/or from the steric hindrance of the 3-vinyl group in Chl f.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Beijerinckiaceae , Clorofila/análogos & derivados , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
8.
Environ Microbiol ; 24(2): 596-613, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34320271

RESUMO

The biological importance of lanthanides has only recently been identified, initially as the active site metal of the alternative methanol dehydrogenase (MDH) Xox-MDH. So far, the effect of lanthanide (Ln) has only been studied in relatively few organisms. This work investigated the effects of Ln on gene transcription and protein expression in the facultative methanotroph Methylocella silvestris BL2, a widely distributed methane-oxidizing bacterium with the unique ability to grow not just on methane but also on other typical components of natural gas, ethane and propane. Expression of calcium- or Ln-dependent MDH was controlled by Ln (the lanthanide switch) during growth on one-, two- or three-carbon substrates, and Ln imparted a considerable advantage during growth on propane, a novel result extending the importance of Ln to consumers of this component of natural gas. Two Xox-MDHs were expressed and regulated by Ln in M. silvestris, but interestingly Ln repressed rather than induced expression of the second Xox-MDH. Despite the metabolic versatility of M. silvestris, no other alcohol dehydrogenases were expressed, and in double-mutant strains lacking genes encoding both Ca- and Ln-dependent MDHs (mxaF and xoxF5 or xoxF1), growth on methanol and ethanol appeared to be enabled by expression of the soluble methane monooxygenase.


Assuntos
Oxirredutases do Álcool , Proteínas de Bactérias , Beijerinckiaceae , Lantânio , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Beijerinckiaceae/efeitos dos fármacos , Beijerinckiaceae/genética , Expressão Gênica , Lantânio/farmacologia , Metano/metabolismo , Metanol/metabolismo , Gás Natural/microbiologia
9.
J Biosci Bioeng ; 132(5): 460-468, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462232

RESUMO

To develop biotechnological process for methane to methanol conversion, selection of a suitable methanotrophic platform is an important aspect. Systematic approach based on literature and public databases was developed to select representative methanotrophs Methylotuvimicrobium alcaliphilum, Methylomonas methanica, Methylosinus trichosporium and Methylocella silvestris. Selected methanotrophs were further investigated for methanol tolerance and methanol production on pure methane as well as biogas along with key enzyme activities involved in methane utilization. Among selected methanotrophs M. alcaliphilum showed maximum methanol tolerance of 6% v/v along with maximum methanol production of 307.90 mg/L and 247.37 mg/L on pure methane and biogas respectively. Activity of methane monooxygenase and formate dehydrogenase enzymes in M.alcaliphilum was significantly higher up to 98.40 nmol/min/mg cells and 0.87 U/mg protein, respectively. Biotransformation trials in 14 L fermentor resulted in increased methanol production up to 418 and 331.20 mg/L, with yield coefficient 0.83 and 0.71 mg methanol/mg of pure methane and biogas respectively. The systematic selection resulted in haloalkaliphilic strain M. alcaliphilum as one of the potential methanotroph for bio-methanol production.


Assuntos
Metano , Metanol , Beijerinckiaceae , Biocombustíveis , Methylomonas
10.
Appl Environ Microbiol ; 87(13): e0314420, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893117

RESUMO

Recent work with Methylorubrum extorquens AM1 identified intracellular, cytoplasmic lanthanide storage in an organism that harnesses these metals for its metabolism. Here, we describe the extracellular and intracellular accumulation of lanthanides in the Beijerinckiaceae bacterium RH AL1, a newly isolated and recently characterized methylotroph. Using ultrathin-section transmission electron microscopy (TEM), freeze fracture TEM (FFTEM), and energy-dispersive X-ray spectroscopy, we demonstrated that strain RH AL1 accumulates lanthanides extracellularly at outer membrane vesicles (OMVs) and stores them in the periplasm. High-resolution elemental analyses of biomass samples revealed that strain RH AL1 can accumulate ions of different lanthanide species, with a preference for heavier lanthanides. Its methanol oxidation machinery is supposedly adapted to light lanthanides, and their selective uptake is mediated by dedicated uptake mechanisms. Based on transcriptome sequencing (RNA-seq) analysis, these presumably include the previously characterized TonB-ABC transport system encoded by the lut cluster but potentially also a type VI secretion system. A high level of constitutive expression of genes coding for lanthanide-dependent enzymes suggested that strain RH AL1 maintains a stable transcript pool to flexibly respond to changing lanthanide availability. Genes coding for lanthanide-dependent enzymes are broadly distributed taxonomically. Our results support the hypothesis that central aspects of lanthanide-dependent metabolism partially differ between the various taxa. IMPORTANCE Although multiple pieces of evidence have been added to the puzzle of lanthanide-dependent metabolism, we are still far from understanding the physiological role of lanthanides. Given how widespread lanthanide-dependent enzymes are, only limited information is available with respect to how lanthanides are taken up and stored in an organism. Our research complements work with commonly studied model organisms and showed the localized storage of lanthanides in the periplasm. This storage occurred at comparably low concentrations. Strain RH AL1 is able to accumulate lanthanide ions extracellularly and to selectively utilize lighter lanthanides. The Beijerinckiaceae bacterium RH AL1 might be an attractive target for developing biorecovery strategies to obtain these economically highly demanded metals in environmentally friendly ways.


Assuntos
Beijerinckiaceae/metabolismo , Lantânio/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Beijerinckiaceae/genética , Beijerinckiaceae/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Metanol/metabolismo , Microscopia Eletrônica de Transmissão , Periplasma/metabolismo
11.
Sci Rep ; 11(1): 6794, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762609

RESUMO

This study evaluated the phytoextraction capacity of the fern Pteris vittata grown on a natural arsenic-rich soil of volcanic-origin from the Viterbo area in central Italy. This calcareous soil is characterized by an average arsenic concentration of 750 mg kg-1, of which 28% is bioavailable. By means of micro-energy dispersive X-ray fluorescence spectrometry (µ-XRF) we detected As in P. vittata fronds after just 10 days of growth, while a high As concentrations in fronds (5,000 mg kg-1), determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES), was reached after 5.5 months. Sixteen arsenate-tolerant bacterial strains were isolated from the P. vittata rhizosphere, a majority of which belong to the Bacillus genus, and of this majority only two have been previously associated with As. Six bacterial isolates were highly As-resistant (> 100 mM) two of which, homologous to Paenarthrobacter ureafaciens and Beijerinckia fluminensis, produced a high amount of IAA and siderophores and have never been isolated from P. vittata roots. Furthermore, five isolates contained the arsenate reductase gene (arsC). We conclude that P. vittata can efficiently phytoextract As when grown on this natural As-rich soil and a consortium of bacteria, largely different from that usually found in As-polluted soils, has been found in P. vittata rhizosphere.


Assuntos
Arsênio/análise , Beijerinckiaceae/metabolismo , Micrococcaceae/metabolismo , Pteris/química , Solo/química , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Beijerinckiaceae/química , Beijerinckiaceae/isolamento & purificação , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Micrococcaceae/química , Micrococcaceae/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pteris/metabolismo , Pteris/microbiologia , Rizosfera , Sideróforos/análise , Sideróforos/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Espectrofotometria Atômica
12.
Sci Rep ; 11(1): 6416, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742002

RESUMO

Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.


Assuntos
Beijerinckiaceae/metabolismo , Betaproteobacteria/metabolismo , Burkholderiaceae/metabolismo , Ciclo do Carbono/fisiologia , Carbono/metabolismo , Florestas , Microbiota/genética , Microbiologia do Solo , Solo/química , Áreas Alagadas , Acidobacteria/metabolismo , Beijerinckiaceae/genética , Betaproteobacteria/genética , Burkholderiaceae/genética , Dióxido de Carbono/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Malásia , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Árvores/metabolismo
13.
J Phys Chem B ; 125(8): 2009-2017, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605728

RESUMO

Control of the spectral overlap between energy donors and acceptors provides insight into excitation energy transfer (EET) mechanisms in photosynthetic light-harvesting proteins. Substitution of energy-donating B800 bacteriochlorophyll (BChl) a with other pigments in the light-harvesting complex 2 (LH2) of purple photosynthetic bacteria has been extensively performed; however, most studies on the B800 substitution have focused on the decrease in the spectral overlap integral with energy-accepting B850 BChl a by reconstitution of chlorophylls into the B800 site. Here, we reconstitute BChl b into the B800 site of the LH2 protein from Rhodoblastus acidophilus to increase the spectral overlap with B850 BChl a. BChl b in the B800 site had essentially the same hydrogen-bonding pattern as B800 BChl a, whereas it showed a red-shifted Qy absorption band at 831 nm. The EET rate from BChl b to B850 BChl a in the reconstituted LH2 was similar to that of native LH2 despite the red shift of the Qy band of the energy donor. These results demonstrate the importance of the contribution of the density of excitation states of the B850 circular assembly, which incorporates higher lying optically forbidden states, to intracomplex EET in LH2.


Assuntos
Bacterioclorofila A , Bacterioclorofilas , Proteínas de Bactérias , Beijerinckiaceae , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo
14.
J Chem Phys ; 154(4): 045102, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514092

RESUMO

Over the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy. We find that, although at cryogenic temperature energy relaxation is very rapid, exciton mobility is limited over a significant range of excitation energies. This points to the presence of a sub-200 fs, spatially local energy-relaxation mechanism and suggests that local trapping might contribute substantially more in cryogenic experiments than under physiological conditions where the thermal energy is comparable to or larger than the static disorder.


Assuntos
Beijerinckiaceae/química , Complexos de Proteínas Captadores de Luz/química , Teoria Quântica , Elétrons , Transferência de Energia , Análise Espectral , Temperatura
15.
Bioresour Technol ; 323: 124550, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360718

RESUMO

In the present study, potato peels were subjected to anaerobic digestion (AD) to produce biogas (methane [CH4] and carbon dioxide), which was subsequently used as a substrate for methanol production by methanotrophs. AD resulted in high yields of up to 170 L CH4/kg total solids (TS) from 250 mL substrate (2% TS, w/v). Under optimized conditions, maximum methanol production of 4.97 and 3.36 mmol/L from raw biogas was observed in Methylocella tundrae and Methyloferula stellata, respectively. Immobilization of methanotrophs on banana leaves showed loading of up to 156 mg dry cell mass/g support. M. tundrae immobilized on banana leaves retained 31.6-fold higher methanol production stability, compared to non-immobilized cells. To the best of our knowledge, this is the first study on immobilization of methanotrophs on banana leaves for producing methanol from potato peels AD-derived biogas. Such integrative approaches may be improved through process up-scaling to achieve sustainable development.


Assuntos
Musa , Solanum tuberosum , Anaerobiose , Beijerinckiaceae , Biocombustíveis , Reatores Biológicos , Metano , Metanol , Folhas de Planta
16.
J Chem Phys ; 153(14): 144114, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086803

RESUMO

First-principles calculations offer the chance to obtain a microscopic understanding of light-harvesting processes. Time-dependent density functional theory can have the computational efficiency to allow for such calculations. However, the (semi-)local exchange-correlation approximations that are computationally most efficient fail to describe charge-transfer excitations reliably. We here investigate whether the inexpensive average density self-interaction correction (ADSIC) remedies the problem. For the systems that we study, ADSIC is even more prone to the charge-transfer problem than the local density approximation. We further explore the recently reported finding that the electrostatic potential associated with the chromophores' protein environment in the light-harvesting complex 2 beneficially shifts spurious excitations. We find a great sensitivity on the chromophores' atomistic structure in this problem. Geometries obtained from classical molecular dynamics are more strongly affected by the spurious charge-transfer problem than the ones obtained from crystallography or density functional theory. For crystal structure geometries and density-functional theory optimized ones, our calculations confirm that the electrostatic potential shifts the spurious excitations out of the energetic range that is most relevant for electronic coupling.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Beijerinckiaceae/enzimologia , Teoria da Densidade Funcional , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Eletricidade Estática
17.
Biosci Biotechnol Biochem ; 84(12): 2508-2520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32752982

RESUMO

An enzyme belonging to glycoside hydrolase family 68 (GH68) from Beijerinckia indica subsp. indica NBRC 3744 was expressed in Escherichia coli. Biochemical characterization showed that the enzyme was identified to be a ß-fructosyltransferase (BiBftA). Crystallization of a full-length BiBftA was initially attempted, but no crystals were obtained. We constructed a variant in which 5 residues (Pro199-Gly203) and 13 residues (Leu522-Gln534) in potentially flexible regions were deleted, and we successfully crystallized this variant BiBftA. BiBftA is composed of a five-bladed ß-propeller fold as in other GH68 enzymes. The structure of BiBftA in complex with fructose unexpectedly indicated that one ß-fructofuranose (ß-Fruf) molecule and one ß-fructopyranose molecule bind to the catalytic pocket. The orientation of ß-Fruf at subsite -1 is tilted from the orientation observed in most GH68 enzymes, presenting a second structure of a GH68 enzyme in complex with the tilted binding mode of ß-Fruf.


Assuntos
Beijerinckiaceae/enzimologia , Frutose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutagênese , Conformação Proteica , Relação Estrutura-Atividade
18.
Microb Cell Fact ; 19(1): 144, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677952

RESUMO

BACKGROUND: Methylocella silvestris is a facultative aerobic methanotrophic bacterium which uses not only methane, but also other alkanes such as ethane and propane, as carbon and energy sources. Its high metabolic versatility, together with the availability of tools for its genetic engineering, make it a very promising platform for metabolic engineering and industrial biotechnology using natural gas as substrate. RESULTS: The first Genome Scale Metabolic Model for M. silvestris is presented. The model has been used to predict the ability of M. silvestris to grow on 12 different substrates, the growth phenotype of two deletion mutants (ΔICL and ΔMS), and biomass yield on methane and ethanol. The model, together with phenotypic characterization of the deletion mutants, revealed that M. silvestris uses the glyoxylate shuttle for the assimilation of C1 and C2 substrates, which is unique in contrast to published reports of other methanotrophs. Two alternative pathways for propane metabolism have been identified and validated experimentally using enzyme activity tests and constructing a deletion mutant (Δ1641), which enabled the identification of acetol as one of the intermediates of propane assimilation via 2-propanol. The model was also used to integrate proteomic data and to identify key enzymes responsible for the adaptation of M. silvestris to different substrates. CONCLUSIONS: The model has been used to elucidate key metabolic features of M. silvestris, such as its use of the glyoxylate shuttle for the assimilation of one and two carbon compounds and the existence of two parallel metabolic pathways for propane assimilation. This model, together with the fact that tools for its genetic engineering already exist, paves the way for the use of M. silvestris as a platform for metabolic engineering and industrial exploitation of methanotrophs.


Assuntos
Beijerinckiaceae/crescimento & desenvolvimento , Beijerinckiaceae/genética , Isocitrato Liase/genética , Malato Sintase/genética , Modelos Biológicos , Propano/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Genes Bacterianos , Engenharia Genética , Glioxilatos/metabolismo , Microbiologia Industrial , Redes e Vias Metabólicas/genética , Metano/metabolismo , Mutação , Proteômica
19.
Water Res ; 184: 116138, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721763

RESUMO

Methane-oxidizing bacteria (MOB) that can use biogas and recycled nitrogen from wastewater as a sustainable feedstock for single cell protein (SCP) synthesis are receiving increasing attention. Though promising, limited knowledge is available on the alternative strains especially the ones that can tolerant to strict environments such as acidic conditions. Furthermore, how would the hydrogen sulfide affect the MOB (especially the alternative strains) for SCP synthesis when crude biogas is used as feedstock is still unknown. In this study, the capability of an acidic-tolerant methanotrophic bacterium Methylocapsa acidiphila for SCP production using raw biogas and the associated inhibitory effect of sulfide on the bioconversion was for the first time investigated. Results showed that the inhibitory effect of sulfide on the growth of M. acidiphila was observed starting from 8.13 mg L-1 Na2S (equivalent to approximately 1000 ppm of H2S in crude biogas). The total amino acid content in the dry biomass decreased more than two times due to sulfide inhibition compared with the control samples without the presence of sulfide (585.96 mg/g dry biomass), while the proportion of essential amino acids in the total amino acid was not affected when the concentration of Na2S was lower than 5.73 mg L-1. The performance of M. acidiphila in a sulfide-rich environment was further studied at different operational conditions. The feeding gas with a CH4/O2 ratio of 6:4 could help to alleviate the sulfide inhibition, compared with other ratios (4:6 and 8:2). Moreover, the sequential supply of the feed gas could also alleviate sulfide inhibition. In addition, the MOB's growth rate was higher when applying a higher mixing rate of 120 rpm, compared with 70 rpm and 0, due to a better gas-liquid mass transfer. The inoculum size of 20% and 10% resulted in a faster growth rate compared with the 5%. Furthermore, M. acidiphila could assimilate either NH4+ or NO3- as nitrogen source with a similar growth rate, giving it the potential to recycle nitrogen from a wide range of wastewaters. The results will not only create new knowledge for better understanding the role of hydrogen sulfide in the assimilation of raw biogas by acid-tolerant M. acidiphila but also provide technical insights into the development of an efficient and robust process for the waste-to-protein conversion.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Beijerinckiaceae , Reatores Biológicos , Proteínas Alimentares , Metano , Sulfetos
20.
Phys Chem Chem Phys ; 22(19): 10500-10518, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31950960

RESUMO

The chromophores of rhodopsins (Rh) and light-harvesting (LH) complexes still represent a major challenge for a quantum chemical description due to their size and complex electronic structure. Since gradient corrected and hybrid density functional approaches have been shown to fail for these systems, only range-separated functionals seem to be a promising alternative to the more time consuming post-Hartree-Fock approaches. For extended sampling of optical properties, however, even more approximate approaches are required. Recently, a long-range corrected (LC) functional has been implemented into the efficient density functional tight binding (DFTB) method, allowing to sample the excited states properties of chromophores embedded into proteins using quantum mechanical/molecular mechanical (QM/MM) with the time-dependent (TD) DFTB approach. In the present study, we assess the accuracy of LC-TD-DFT and LC-TD-DFTB for rhodopsins (bacteriorhodopsin (bR) and pharaonis phoborhodopsin (ppR)) and LH complexes (light-harvesting complex II (LH2) and Fenna-Matthews-Olson (FMO) complex). This benchmark study shows the improved description of the color tuning parameters compared to standard DFT functionals. In general, LC-TD-DFTB can exhibit a similar performance as the corresponding LC functionals, allowing a reliable description of excited states properties at significantly reduced cost. The two chromophores investigated here pose complementary challenges: while huge sensitivity to external field perturbation (color tuning) and charge transfer excitations are characteristic for the retinal chromophore, the multi-chromophoric character of the LH complexes emphasizes a correct description of inter-chromophore couplings, giving less importance to color tuning. None of the investigated functionals masters both systems simultaneously with satisfactory accuracy. LC-TD-DFTB, at the current stage, although showing a systematic improvement compared to TD-DFTB cannot be recommended for studying color tuning in retinal proteins, similar to some of the LC-DFT functionals, because the response to external fields is still too weak. For sampling of LH-spectra, however, LC-TD-DFTB is a viable tool, allowing to efficiently sample absorption energies, as shown for three different LH complexes. As the calculations indicate, geometry optimization may overestimate the importance of local minima, which may be averaged over when using trajectories. Fast quantum chemical approaches therefore may allow for a direct sampling of spectra in the near future.


Assuntos
Bacteriorodopsinas/química , Complexos de Proteínas Captadores de Luz/química , Bacterioclorofila A/química , Beijerinckiaceae/química , Chlorobi/química , Teoria da Densidade Funcional , Modelos Químicos , Retinaldeído/química , Rhodospirillaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA