Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.004
Filtrar
1.
Arch Oral Biol ; 163: 105976, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640776

RESUMO

OBJECTIVE: The present study investigated the effects of 4-hydroxy-3-methoxybenzaldehyde (4-H-3-MB) against Streptococcus mutans (S. mutans) using an in vitro cariogenic biofilm model. DESIGN: The antimicrobial susceptibility of biofilm-forming S. mutans was evaluated by disc diffusion method. In vitro investigations were performed using crystal violet staining assay (biofilm assay), exopolysaccharide (EPS) assay, acid production, growth curve analysis, optical microscopic, and FE-SEM analyses to determine the antibiofilm activity of 4-H-3-MB. RESULTS: S. mutans (SDC-05) was resistant to ampicillin, piperacillin/tazobactam and ceftriaxone, whereas the other strains of S. mutans (SDC-01, 02, 03 and SDC-04) were sensitive to all the antibiotics tested. 4-H-3-MB showed promising antibiofilm activity on S. mutans UA159 (79.81 %, 67.76 % and 56.31 %) and S. mutans SDC-05 (77.00 %, 59.48 % and 48.22 %) at the lowest concentration of 0.2, 0.1, 0.05 mg/ml. 4-H-3-MB did not inhibit bacterial growth even at concentrations 0.2 mg/ml. Similarly, 4-H-3-MB led to significant attrition in exopolysaccharide (EPS) and acid production by S. mutans UA159 and S. mutans (SDC-05) at the concentration of 0.2, 0.1 mg/ml, respectively. Optical microscopy and FE-SEM analysis 4-H-3-MB reduced the biofilm thickness of S. mutans UA159 and S. mutans SDC-05 relative to the untreated specimens. CONCLUSION: 4-H-3-MB significantly inhibited biofilm formation by S. mutans in a dose-dependent manner. Hence, our findings indicate that the active principle of 4-H-3-MB could be used as a biofilm inhibiting agent against S. mutans.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Streptococcus mutans , Fatores de Virulência , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Benzaldeídos/farmacologia , Antibacterianos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Microscopia Eletrônica de Varredura , Técnicas In Vitro
2.
Biomater Adv ; 160: 213863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642516

RESUMO

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Assuntos
Acroleína/análogos & derivados , Antifúngicos , Benzaldeídos , Quitosana , Fusarium , Grafite , Nanocompostos , Solanum lycopersicum , Grafite/farmacologia , Grafite/química , Solanum lycopersicum/microbiologia , Nanocompostos/química , Antifúngicos/farmacologia , Antifúngicos/química , Fusarium/efeitos dos fármacos , Quitosana/farmacologia , Quitosana/química , Benzaldeídos/farmacologia , Benzaldeídos/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pythium/efeitos dos fármacos , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Acroleína/farmacologia , Acroleína/química
3.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656548

RESUMO

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Assuntos
Antifúngicos , Aspergillus fumigatus , Benzaldeídos , Biofilmes , Fusarium , Testes de Sensibilidade Microbiana , Polifenóis , Taninos , Benzaldeídos/farmacologia , Fusarium/efeitos dos fármacos , Taninos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Animais , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Virulência/efeitos dos fármacos , Larva/microbiologia , Larva/efeitos dos fármacos , Fusariose/tratamento farmacológico , Fusariose/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Mariposas/microbiologia , Mariposas/efeitos dos fármacos
4.
Chem Biol Interact ; 394: 111003, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608998

RESUMO

The use of flavored e-liquids in electronic nicotine delivery systems (ENDS) has become very popular in recent years, but effects of these products have not been well characterized outside the lung. In this study, acute exposure to the popular flavoring vanillin (VAN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-1000 µM VAN for 24 or 48 h and cellular stress responses were determined. Mitochondrial viability using MTT assay showed a significant decrease between the control and 1000 µM group by 48 h. Seahorse XFp analysis showed significantly increased basal respiration, ATP production, and proton leak after 24 h exposure. By 48 h exposure, these parameters remained significantly increased in addition to non-mitochondrial respiration and maximal respiration. Glycolytic activity after 24 h exposure showed significant decreases in glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic acidification. The autophagy markers microtubule-associated protein 1A/1B light chain 3 (LC3B-I and LC3B-II) were probed via western blotting. The ratio of LC3B-II/LC3B-I was significantly increased after 24 h exposure to VAN, but by 48 h this ratio significantly decreased. The mitophagy marker PINK1 showed an increasing trend at 24 h, and its downstream target Parkin was significantly increased between the control and 750 µM group only. Finally, the oxidative stress marker 4-HNE was significantly decreased after 48 h exposure to VAN. These results indicate that acute exposure to VAN in the kidney HK-2 model can induce energy and autophagic changes within the cell.


Assuntos
Autofagia , Benzaldeídos , Células Epiteliais , Aromatizantes , Túbulos Renais Proximais , Humanos , Autofagia/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Aromatizantes/farmacologia , Aromatizantes/toxicidade , Benzaldeídos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Linhagem Celular , Glicólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
5.
Microb Pathog ; 190: 106624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492828

RESUMO

Pseudomonas aeruginosa is widely associated with biofilm-mediated antibiotic resistant chronic and acute infections which constitute a persistent healthcare challenges. Addressing this threat requires exploration of novel therapeutic strategies involving the combination of natural compounds and conventional antibiotics. Hence, our study has focused on two compounds; cuminaldehyde and ciprofloxacin, which were strategically combined to target the biofilm challenge of P. aeruginosa. The minimum inhibitory concentration (MIC) of cuminaldehyde and ciprofloxacin was found to be 400 µg/mL and 0.4 µg/mL, respectively. Moreover, the fractional inhibitory concentration index (FICI = 0.62) indicated an additive interaction prevailed between cuminaldehyde and ciprofloxacin. Subsequently, sub-MIC doses of cuminaldehyde (25 µg/mL) and ciprofloxacin (0.05 µg/mL) were selected for an array of antibiofilm assays which confirmed their biofilm inhibitory potential without exhibiting any antimicrobial activity. Furthermore, selected doses of the mentioned compounds could manage biofilm on catheter surface by inhibiting and disintegrating existing biofilm. Additionally, the test combination of the mentioned compounds reduced virulence factors secretion, accumulated reactive oxygen species and increased cell-membrane permeability. Thus, the combination of cuminaldehyde and ciprofloxacin demonstrates potential in combating biofilm-associated Pseudomonal threats.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Ciprofloxacina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Benzaldeídos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência , Cimenos/farmacologia , Sinergismo Farmacológico , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos
6.
Int J Biol Macromol ; 266(Pt 2): 130910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547953

RESUMO

In this study, we developed hydrogels using polyvinyl alcohol (PVA), vanillin (V), and a fungus-derived carboxymethyl chitosan (FC) using a freeze-thaw-based method. These hydrogels were strengthened by bonding, including Schiff's base bonding between V and FC and hydrogen bonding between PVA, FC, and V. The physiological properties of these PFCV hydrogels were characterized by FTIR, TGA, compressive mechanical testing, and rheology and water contact angle measurements. FTIR spectra confirmed the effective integration of FC and V into the PVA network. TGA results showed that FC and V enhanced the thermal stability of PFCV hydrogels. Mechanical tests showed increasing the amount of V reduced mechanical properties but did not alter the elastic character of hydrogels. SEM images displayed a well-interconnected porous structure with excellent swelling capacity. In addition, we examined biological properties using cell-based in vitro studies and performed antibacterial assessments to assess suitability for potential wound dressing applications. Prestoblue™ and live/dead cell analysis strongly supported skin fibroblast attachment and viability, DPPH assays indicated substantial antioxidant activity, and PFCV hydrogels showed enhanced antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In summary, incorporating V and FC into PVA hydrogels appears to be attractive for wound dressing applications.


Assuntos
Antibacterianos , Bandagens , Benzaldeídos , Quitosana , Quitosana/análogos & derivados , Hidrogéis , Álcool de Polivinil , Quitosana/química , Quitosana/farmacologia , Álcool de Polivinil/química , Benzaldeídos/química , Benzaldeídos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Congelamento , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Reologia
7.
Mol Microbiol ; 121(5): 833-849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308563

RESUMO

The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.


Assuntos
Acinetobacter baumannii , Aderência Bacteriana , Proteínas de Bactérias , Biofilmes , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ácido Vanílico , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Óperon , Sítios de Ligação , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia
8.
Plant Physiol Biochem ; 207: 108427, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38367389

RESUMO

Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 µM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 µM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.


Assuntos
Araceae , Benzaldeídos , Benzaldeídos/farmacologia , Fotossíntese , Antioxidantes/metabolismo , Cloroplastos/metabolismo , Luz , Plantas/metabolismo , Araceae/fisiologia
9.
Folia Neuropathol ; 62(1): 76-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174675

RESUMO

This study investigated the protective effect of vanillin against Parkinson's disease (PD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) was administered s.c. for 6 consecutive days to induce PD and mice were treated with vanillin (100 and 200 mg/kg, p.o.) for 15 days. Cognitive, motor and non-motor functions were assessed to evaluate the effect of vanillin in PD mice. Levels of dopamine and glutamate and activity of monoamine oxidaseB (MAO-B) were estimated in vanillin-treated PD mice. The effect of vanillin on the level of lipid peroxidation and superoxide dismutase in brain tissue of PD mice was estimated. Data of the study revealed that vanillin reversed the altered cognitive, motor and non-motor function in PD mice. Activity of MAO-B and neurochemical level were attenuated with vanillin in PD mice. Inflammatory cytokines, nuclear factor kappa B (NF-kB) and Toll-like receptor 4 (TLR-4) levels were lower in the vanillin-treated group compared to the PD group of mice. Data of the study suggest that vanillin protects against neuronal injury and recovers the altered behaviour in PD mice by regulating neurochemical balance and the TLR-4/NF-kB pathway.


Assuntos
Benzaldeídos , Estresse Oxidativo , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos , Benzaldeídos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Inflamação/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico
10.
J Basic Microbiol ; 64(2): e2300494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988661

RESUMO

Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzaldeídos/farmacologia , Antibacterianos/farmacologia
11.
Rapid Commun Mass Spectrom ; 38(2): e9671, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124165

RESUMO

RATIONALE: Sickle cell disease, a debilitating genetic disorder affecting numerous newborns globally, has historically received limited attention in pharmaceutical research. However, recent years have witnessed a notable shift, with the Food and Drug Administration approving three innovative disease-modifying medications. Voxelotor, also known as GBT440, is a promising compound that effectively prevents sickling, providing a safe approach to alleviate chronic hemolytic anemia in sickle cell disease. It is a novel, orally bioavailable small molecule that inhibits hemoglobin S polymerization by enhancing oxygen affinity to hemoglobin. The investigation demonstrated that voxelotor led to an unintended elevation of hemoglobin levels in healthy individuals by increasing serum erythropoietin levels. METHODS: Voxelotor and its metabolites in an in vitro setting utilizing equine liver microsomes were discussed. Plausible structures of the identified metabolites were inferred through the application of liquid chromatography in conjunction with high-resolution mass spectrometry. RESULTS: Under the experimental conditions, a total of 31 metabolites were detected, including 16 phase I metabolites, two phase II metabolites, and 13 conjugates of phase I metabolites. The principal phase I metabolites were generated through processes such as hydroxylation, reduction, and dissociation. The presence of glucuronide and sulfate conjugates of the parent drug were also observed, along with hydroxylated, reduced, and dissociated analogs. CONCLUSIONS: The data acquired will accelerate the identification of voxelotor and related compounds, aiding in the detection of their illicit use in competitive sports. It is crucial to emphasize that the metabolites detailed in this manuscript were identified through in vitro experiments and their detection in an in vivo study may not be guaranteed.


Assuntos
Anemia Falciforme , Dopagem Esportivo , Recém-Nascido , Humanos , Animais , Cavalos , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Dopagem Esportivo/prevenção & controle , Polimerização , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Hemoglobinas
12.
ACS Infect Dis ; 10(1): 120-126, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38099713

RESUMO

Chemical screening efforts recently found that 3-phenoxybenzaldehyde, a breakdown product of alpha-cyano pyrethroids, was a potent spatial repellent against Aedes aegypti mosquitoes in a glass tube repellency assay. In order to characterize this molecule further and identify structure-activity relationships, a set of 12 benzaldehyde analogues were screened for their repellency and toxicity in vapor phase exposures at 100 µg/cm2. Dose-response analyses were performed for the most active compounds in order to better characterize their repellent potency and toxicity compared to those of other commercially available toxicants. The three most toxic compounds (LC50 values) were 3-chlorobenzaldehyde (CBA) (37 µg/cm2), biphenyl-3-carboxaldehyde (BCA) (48 µg/cm2), and 3-vinylbenzaldehyde (66 µg/cm2), which makes them less toxic than bioallethrin (6.1 µg/cm2) but more toxic than sandalwood oil (77 µg/cm2), a repellent/toxic plant essential oil. The most repellent analogues with EC50 values below 30 µg/cm2 were 3-phenoxybenzaldehyde (6.3 µg/cm2), isophthalaldehyde (23 µg/cm2), BCA (17 µg/cm2), and CBA (22 µg/cm2), which makes them about as active as N,N-diethyl-3-methylbenzamide (25.4 µg/cm2). We further investigated the activity of a select group of these benzaldehydes to block the firing of the central nervous system of A. aegypti larvae. Compounds most capable of repelling and killing mosquitoes in the vapor phase were also those most capable of blocking nerve firing in the larval mosquito nervous system. The results demonstrate that benzaldehyde analogues are viable candidate repellent and insecticidal molecules and may lead to the development of future repellent and vapor toxic vector control tools.


Assuntos
Aedes , Benzamidas , Repelentes de Insetos , Animais , Benzaldeídos/farmacologia , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Larva
13.
Mol Med Rep ; 28(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37800608

RESUMO

Gastrodia elata Blume has been widely used to treat various central and peripheral nerve diseases, and Para­hydroxybenzaldehyde (PHBA) is one of the indicated components suggested to provide a neuroprotective effect. In our previous, it was shown that PHBA protected mitochondria against cerebral ischemia­reperfusion (I/R) injury in rats. In the present study, how PHBA regulated the metabolic mechanism in blood following cerebral I/R was assessed to identify an effective therapeutic target for the prevention and treatment of ischemic stroke (IS). First, a rat model of cerebral ischemia­reperfusion injury was established via middle cerebral artery occlusion/reperfusion (MCAO/R). The therapeutic effect of PHBA on brain I/R was evaluated by assessing the neurological function score, triphenyl tetrazolium chloride, hematoxylin and eosin, and Nissl staining. Next, a non­targeted metabolomic based on high­performance liquid chromatography quadrupole time­of­flight mass spectrometry was established to identify differential metabolites. Finally, a targeted metabolic spectrum was analyzed and the potential therapeutic targets were verified by Western blotting. The results showed that the neurological function score, cerebral infarction area, hippocampal morphology, and the number of neurons in the PHBA group were significantly improved compared with the model group. Metabonomic analysis showed that 13 different metabolites were identified between the model and PHBA group, which may be involved in the 'tricarboxylic acid cycle', 'glutathione metabolism', and 'mutual transformation of pentose and glucuronates', amongst others. Among these, the levels of the most significant differential metabolite, dGMP, decreased significantly following PHBA treatment. Western blotting was used to verify the expression of membrane­associated guanosine kinase PSD­95 and the subunit of glutamate AMPA receptor GluA1, which significantly increased after PHBA treatment. In addition, it was also found that PHBA increased the expression of the light chain­3 protein and autophagy effector protein 1, whilst the expression of sequestosome­1 decreased, indicating that PHBA promoted autophagy. Similarly, in TUNEL staining and detection of apoptosis­related proteins, it was found that MCAO/R upregulated the expression of Bax and cleaved­caspase­3 whilst downregulating the expression of Bcl­2 and increasing the apoptosis of hippocampal neurons; PHBA reversed this situation. These results suggest that cerebral I/R causes postsynaptic dysfunction by disrupting the interaction between PSD­95 and AMPARs, and the inhibition of the autophagy system eventually leads to the apoptosis of hippocampal neurons.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ataque Isquêmico Transitório/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Apoptose , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894709

RESUMO

Multicomponent reactions have emerged as an important approach for the synthesis of diverse and complicated chemical compounds. They have various advantages over two-component reactions, including the convenience of one-pot procedures and the ability to modify the structure of agents. Here, we employed in vitro and in silico studies to explore the anticancer potential of novel aminobenzylnaphthols derived from the Betti reaction (MMZ compounds). MTT assay was used to explore the cytotoxic activity of the compounds in pancreatic (BxPC-3 cells) and colorectal (HT-29) cancer cell lines or normal human lung fibroblasts (WI-38 cells). Proapoptotic properties of two derivatives MMZ-45AA and MMZ-140C were explored using AO/EB and annexin V-FITC/PI staining. In silico studies including ADMET profiling, molecular target prediction, docking, and dynamics were employed. The compounds exhibited cytotoxic properties and showed proapoptotic properties in respective IC50 concentrations. As indicated by in silico investigations, anticancer activity of MMZs can be attributed to the inhibition of ADORA1, CDK2, and TRIM24. Furthermore, compounds exhibited favorable ADMET properties. MMZs constitute an interesting scaffold for the potential development of new anticancer agents.


Assuntos
Antineoplásicos , Benzaldeídos , Humanos , Benzaldeídos/farmacologia , Antineoplásicos/química , Células HT29 , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo
15.
Int J Antimicrob Agents ; 62(5): 106963, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666435

RESUMO

Angiostrongylus cantonensis, also known as rat lungworm, is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis and eosinophilic meningoencephalitis, in humans. At present, the therapeutic strategy for cerebral angiostrongyliasis remains controversial. Benzaldehyde, an important bioactive constituent of Gastrodia elata (Tianma), reduces oxidative stress by inhibiting the production of reactive oxygen species. This study aimed to evaluate the therapeutic effect of benzaldehyde in combination with albendazole on angiostrongyliasis in animal models. First, the data from body weight monitoring and behavioural analyses demonstrated that benzaldehyde improved body weight and cognitive function changes after A. cantonensis infection. Next, blood‒brain barrier breakdown and pathological changes were reduced after benzaldehyde and albendazole treatment in BALB/c mice infected with A. cantonensis. Subsequently, four RNA-seq datasets were established from mouse brains that had undergone different treatments: normal, infection, infection + albendazole, and infection + albendazole + 3-hydroxybenzaldehyde groups. Ultimately, benzaldehyde was found to regulate cell apoptosis, oxidative stress and Sonic Hedgehog signalling in mouse brains infected with A. cantonensis. This study evaluated the therapeutic effect of benzaldehyde on angiostrongyliasis, and provided a potential therapeutic strategy for human angiostrongyliasis in the clinical setting. Moreover, the molecular mechanism of benzaldehyde in mouse brains infected with A. cantonensis was elucidated.


Assuntos
Angiostrongylus cantonensis , Lesões Encefálicas , Camundongos , Ratos , Humanos , Animais , Albendazol/uso terapêutico , Albendazol/farmacologia , Benzaldeídos/farmacologia , Proteínas Hedgehog/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Peso Corporal , Encéfalo/patologia
16.
Am J Trop Med Hyg ; 109(5): 999-1005, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696519

RESUMO

To assess the attracting capacity of aliphatic and aromatic aldehydes to Triatoma infestans, the Chagas disease vector, laboratory tests were conducted using individual compounds and mixtures to evaluate their potential use in baited traps for intradomicile population dynamics analysis. Commercial samples of hexanal, nonanal, and benzaldehyde were used at 95% purity. The experiments were performed at 25°C and 65% relative humidity using two procedures: a glass arena with filter papers impregnated with 1, 5, and 10 µL of the tested compounds and a double-choice olfactometer. Attraction was scored positively if the insect remained more than 30 seconds on one of the surfaces. The results of the study showed that hexanal was attractive to females at higher concentrations (5-10 µL; P < 0.0001), and IV instar nymphs were only attracted at the highest concentration (10 µL; P < 0.01). Nonanal was attractive to IV instar nymphs at 1 and 5 µL (P < 0.0001), whereas males and females were more attracted at 1 µL (P < 0.01 and P < 0.05, respectively). Benzaldehyde showed significant differences with respect to controls, attracting females at low concentrations (1 µL; P < 0.0001) and IV instar nymphs at 5 and 10 µL (P < 0.0001 and P < 0.001, respectively). In the olfactometer, the 60:40 hexanal/nonanal mixture was the most effective. In conclusion, this study demonstrated that the aliphatic and aromatic aldehydes studied here, both individually and in mixtures, could be used as effective attractants for T. infestans in intradomicile-baited traps. These results suggest that mixtures of these compounds could be implemented in field trials for Chagas disease surveillance.


Assuntos
Doença de Chagas , Triatoma , Humanos , Masculino , Animais , Feminino , Benzaldeídos/farmacologia
17.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37422440

RESUMO

AIM: Staphylococcus aureus causes several complicated infections. Despite decades of research on developing new antimicrobials, methicillin-resistant S. aureus (MRSA) remains a global health problem. Hence, there is a dire need to identify potent natural antibacterial compounds as an alternative to antimicrobials. In this light, the present work divulges the antibacterial efficacy and the action mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB) isolated from Hemidesmus indicus against S. aureus. METHODS AND RESULTS: Antimicrobial activity of HMB was assessed. HMB exhibited 1024 µg ml-1 as the minimum inhibitory concentration (MIC) and 2 × MIC as the minimum bactericidal concentration against S. aureus. The results were validated by spot assay, time kill, and growth curve analysis. In addition, HMB treatment increased the release of intracellular proteins and nucleic acid contents from MRSA. Additional experiments assessing the structural morphology of bacterial cells using SEM analysis, ß-galactosidase enzyme activity, and the fluorescence intensities of propidium iodide and rhodamine123 dye divulged that the cell membrane as one of the targets of HMB to hinder S. aureus growth. Moreover, the mature biofilm eradication assay revealed that HMB dislodged nearly 80% of the preformed biofilms of MRSA at the tested concentrations. Further, HMB treatment was found to sensitize MRSA cells upon combining tetracycline treatment. CONCLUSIONS: The present study suggests that HMB is a promising compound with antibacterial and antibiofilm activities and could act as a lead structure for developing new antibacterial drugs against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Benzaldeídos/farmacologia , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Biofilmes
18.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768141

RESUMO

Nowadays, bioactive natural products play key roles in drug development due to their safety profile and strong antioxidant power. Vanillin is a natural phenolic compound found in several vanilla beans and widely used for food, cosmetic, and pharmaceutical products. Besides its industrial applications, vanillin possesses several beneficial effects for human health, such as antioxidant activity in addition to anti-inflammatory, anti-mutagenic, anti-metastatic, and anti-depressant properties. Moreover, vanillin exhibits neuroprotective effects on multiple neurological disorders and neuropathophysiological conditions. This study reviews the mechanisms of action by which vanillin prevents neuroinflammation and neurodegeneration in vitro and in vivo systems, in order to provide the latest views on the beneficial properties of this molecule in chronic neurodegenerative diseases and neuropathophysiological conditions.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
19.
Nat Prod Res ; 37(24): 4089-4098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661112

RESUMO

Four new natural compounds named hericenone O (1), hericenone P (2), hericenone Q (3), and hericenone R (4), two of them were reported synthetically (3-4), together with eleven known compounds were isolated from the fruiting bodies of Hericium erinaceus. The chemical structures of the isolated compounds were elucidated by using NMR analysis and mass spectrometry, as well as comparisons with the reported data in the literature. The bioactivity evaluation revealed that hericenone Q showed significant cytotoxic activity against Hep-G2 with IC50 values of 23.89 µM, and against HCT-116 with IC50 values of 65.64 µM.


Assuntos
Antineoplásicos , Basidiomycota , Basidiomycota/química , Benzaldeídos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/análise , Carpóforos/química
20.
Arch Pharm (Weinheim) ; 356(4): e2200554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36575148

RESUMO

New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.


Assuntos
Tiossemicarbazonas , Humanos , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica I , Benzaldeídos/farmacologia , Teoria da Densidade Funcional , Anidrase Carbônica II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA