Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.070
Filtrar
1.
PLoS One ; 19(5): e0304258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781178

RESUMO

Corydalis yanhusuo W.T. Wang is a traditional herb. Benzylisoquinoline alkaloids (BIAs) are the main pharmacological active ingredients that play an important role in sedation, relieving pain, promoting blood circulation, and inhibiting cancer cells. However, there are few studies on the biosynthetic pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo, especially on some specific components, such as tetrahydropalmatine. We carried out widely targeted metabolome and transcriptomic analyses to construct the biosynthetic pathway of benzylisoquinoline alkaloids and identified candidate genes. In this study, 702 metabolites were detected, including 216 alkaloids. Protoberberine-type and aporphine-type alkaloids are the main chemical components in C. yanhusuo bulbs. Key genes for benzylisoquinoline alkaloids biosynthesis, including 6-OMT, CNMT, NMCH, BBE, SOMT1, CFS, SPS, STOX, MSH, TNMT and P6H, were successfully identified. There was no significant difference in the content of benzylisoquinoline alkaloids and the expression level of genes between the two suborgans (mother-bulb and son-bulb). The expression levels of BIA genes in the expansion stage (MB-A and SB-A) were significantly higher than those in the maturity stage (MB-C and SB-C), and the content of benzylisoquinoline alkaloids was consistent with the pattern of gene regulation. Five complete single genes were likely to encode the functional enzyme of CoOMT, which participated in tetrahydropalmatine biosynthesis in C. yanhusuo bulbs. These studies provide a strong theoretical basis for the subsequent development of metabolic engineering of benzylisoquinoline alkaloids (especially tetrahydropalmatine) of C. yanhusuo.


Assuntos
Alcaloides , Corydalis , Metabolômica , Raízes de Plantas , Corydalis/genética , Corydalis/metabolismo , Metabolômica/métodos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Alcaloides/biossíntese , Alcaloides/metabolismo , Transcriptoma , Benzilisoquinolinas/metabolismo , Regulação da Expressão Gênica de Plantas , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Alcaloides de Berberina/metabolismo , Metaboloma
2.
BMC Complement Med Ther ; 24(1): 186, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734604

RESUMO

BACKGROUND: Cepharanthin® alone or in combination with glucocorticoid (GC) has been used to treat chronic immune thrombocytopenia (ITP) since the 1990s. Cepharanthine (CEP) is one of the main active components of Cepharanthin®. The purpose of this study was to investigate the effects of CEP on GC pharmacodynamics on immune cells and analyse the possible action mechanism of their interactions. METHODS: Peripheral blood mononuclear cells (PBMCs), T lymphocytic leukemia MOLT-4 cells and daunorubicin resistant MOLT-4 cells (MOLT-4/DNR) were used to evaluate the pharmacodynamics and molecular mechanisms. Drug pharmacodynamics was evaluated by WST-8 assay. P-glycoprotein function was examined by rhodamine 123 assay. CD4+CD25+Foxp3+ regulatory T cells and Th1/Th2/Th17 cytokines were detected by flow cytometry. P-glycoprotein expression and GC receptor translocation were examined by Western blot. RESULTS: CEP synergistically increased methylprednisolone (MP) efficacy with the suppressive effect on the cell viability of PBMCs. 0.3 and 1 µM of CEP significantly inhibited P-glycoprotein efflux function of CD4+ cells, CD8+ cells, and lymphocytes (P<0.05). 0.03~3 µM of CEP also inhibited the P-glycoprotein efflux function in MOLT-4/DNR cells in a concentration-dependent manner (P<0.001). However, 0.03~3 µM of CEP did not influence P-glycoprotein expression. 0.03~0.3 µM of CEP significantly increased the GC receptor distribution from the cytoplasm to the nucleus in a concentration-dependent manner in MOLT-4/DNR cells. The combination did not influence the frequency of CD4+, CD4+CD25+ and CD4+CD25+Foxp3+ T cells or the secretion of Th1/Th2/Th17 cytokines from PBMCs. In contrast, CEP alone at 1 µM decreased the percentage of CD4+ T cell significantly (P<0.01). It also inhibited the secretion of IL-6, IL-10, IL-17, TNF-α, and IFN-γ. CONCLUSIONS: CEP synergistically promoted MP pharmacodynamics to decrease the cell viability of the mitogen-activated PBMCs, possibly via inhibiting P-glycoprotein function and potentiating GC receptor translocation. The present study provides new evidence of the therapeutic effect of Cepharanthin® alone or in combination with GC for the management of chronic ITP.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Benzilisoquinolinas , Sinergismo Farmacológico , Leucócitos Mononucleares , Metilprednisolona , Receptores de Glucocorticoides , Humanos , Benzilisoquinolinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metilprednisolona/farmacologia , Receptores de Glucocorticoides/metabolismo , Benzodioxóis
3.
Eur J Pharmacol ; 973: 176585, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636799

RESUMO

This study aimed to explore the effects and mechanism of action of stachydrine hydrochloride (Sta) against myocardial infarction (MI) through sarcoplasmic/endoplasmic reticulum stress-related injury. The targets of Sta against MI were screened using network pharmacology. C57BL/6 J mice after MI were treated with saline, Sta (6 or 12 mg kg-1) for 2 weeks, and adult mouse and neonatal rat cardiomyocytes (AMCMs and NRCMs) were incubated with Sta (10-4-10-6 M) under normoxia or hypoxia for 2 or 12 h, respectively. Echocardiography, Evans blue, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used for morphological and functional analyses. Endoplasmic reticulum stress (ERS), unfolded protein reaction (UPR), apoptosis signals, cardiomyocyte contraction, and Ca2+ flux were detected using transmission electron microscopy (TEM), western blotting, immunofluorescence, and sarcomere and Fluo-4 tracing. The ingredient-disease-pathway-target network revealed targets of Sta against MI were related to apoptosis, Ca2+ homeostasis and ERS. Both dosages of Sta improved heart function, decreased infarction size, and potentially increased the survival rate. Sta directly alleviated ERS and UPR and elicited less apoptosis in the border myocardium and hypoxic NRCMs. Furthermore, Sta upregulated sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) in both ischaemic hearts and hypoxic NRCMs, accompanied by restored sarcomere shortening, resting intracellular Ca2+, and Ca2+ reuptake time constants (Tau) in Sta-treated hypoxic ARCMs. However, 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ) (25 µM), a specific SERCA inhibitor, totally abolished the beneficial effect of Sta in hypoxic cardiomyocytes. Sta protects the heart from MI by upregulating SERCA2a to maintain intracellular Ca2+ homeostasis, thus alleviating ERS-induced apoptosis.


Assuntos
Apoptose , Cálcio , Estresse do Retículo Endoplasmático , Homeostase , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Prolina/análogos & derivados , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Homeostase/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Masculino , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Ratos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
J Cell Mol Med ; 28(9): e18354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686557

RESUMO

Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 µg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.


Assuntos
Antifúngicos , Benzilisoquinolinas , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzilisoquinolinas/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
5.
Biochem Pharmacol ; 223: 116113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460907

RESUMO

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Assuntos
Benzilisoquinolinas , Neoplasias Encefálicas , Glioma , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Apoptose , Resistencia a Medicamentos Antineoplásicos
6.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453737

RESUMO

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/química
7.
Eur J Pharmacol ; 969: 176459, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438063

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the ß-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.


Assuntos
Células Epiteliais Alveolares , Benzilisoquinolinas , Fibrose Pulmonar Idiopática , Camundongos , Animais , Mitofagia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Senescência Celular , Fibrose , Proteínas Quinases/metabolismo , Bleomicina/toxicidade , Ubiquitina-Proteína Ligases/metabolismo
8.
Int Immunopharmacol ; 130: 111693, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428144

RESUMO

Oxidative stress and neuroinflammation are two major causes leading to early brain injury after subarachnoid hemorrhage (SAH). Nuclear factor E2-related factor 2 (Nrf2) is a critical transcription factor that contributes to antioxidant responses. Additionally, Nrf2 could inhibit transforming growth factor beta-activated kinase 1 (TAK1), which plays a vital role in microglial activation-mediated neuroinflammation. Neferine (NE) exhibits considerable protective effects in diverse disease models. However, the detailed effect and mechanism of NE on SAH remain unknown. Our data showed that NE treatment significantly reduced behavior and cognitive impairment, and brain edema in the early period after SAH. In addition, NE mitigated SAH-induced oxidative damage, neuroinflammation, and neural death. Moreover, NE inhibited M1 microglial polarization and enhanced M2 phenotype microglia both in vivo and in vitro. Further investigations revealed that NE enhanced the Nrf2-antioxidant response element (ARE) signaling pathway and suppressed TAK1-NF-κB signaling. In contrast, depletion of Nrf2 by ML385 suppressed Nrf2-ARE signaling, induced TAK1-NF-κB activation, and further promoted M1 microglial polarization. Additionally, ML385 abated the neuroprotective effects of NE against SAH. Notably, LPS also aggravated TAK1-NF-κB activation and reversed the beneficial effects of NE after SAH. In summary, NE provides protection after SAH by inhibiting oxidative stress and modulating microglial polarization through Nrf2 activation and TAK1-NF-κB suppression.


Assuntos
Benzilisoquinolinas , Microglia , Fator 2 Relacionado a NF-E2 , NF-kappa B , Doenças Neuroinflamatórias , Hemorragia Subaracnóidea , Masculino , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Camundongos Endogâmicos C57BL , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Fator 2 Relacionado a NF-E2/agonistas , NF-kappa B/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Modelos Animais de Doenças
9.
Aging (Albany NY) ; 16(7): 5905-5915, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517394

RESUMO

Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Barreira Hematoencefálica , Transdução de Sinais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1 , Animais , Proteína da Zônula de Oclusão-1/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular
10.
Virol Sin ; 39(2): 301-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452856

RESUMO

Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.


Assuntos
Antivirais , Benzilisoquinolinas , Farmacorresistência Viral , Antivirais/farmacologia , Humanos , Benzilisoquinolinas/farmacologia , Farmacorresistência Viral/genética , Replicação Viral/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/genética , Avaliação Pré-Clínica de Medicamentos , Genes Reporter , Ensaios de Triagem em Larga Escala , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/antagonistas & inibidores , Enterovirus/efeitos dos fármacos , Enterovirus/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética
11.
Adv Sci (Weinh) ; 11(19): e2309990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477432

RESUMO

Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.


Assuntos
Benzilisoquinolinas , Sistema Enzimático do Citocromo P-450 , Menispermaceae , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Menispermaceae/genética , Menispermaceae/metabolismo , Menispermaceae/química , Alcaloides/metabolismo , Filogenia , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Nat Prod ; 87(4): 1013-1022, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483204

RESUMO

Six undescribed and six known bisbenzylisoquinoline alkaloids were isolated from the embryo of Nelumbo nucifera seeds. Their structures were fully characterized by a combination of 1H, 13C NMR, 2D NMR, and HRESIMS analyses, as well as ECD computational calculations. The antiadipogenic activity of 11 alkaloids was observed in a dose-responsive manner, leading to the suppression of lipid accumulation in 3T3-L1 cells. Luciferase assay and Western blot analysis showed that the active alkaloids downregulated peroxisome proliferator-activated receptor gamma (PPARγ, a key antiadipogenic receptor) expression in 3T3-L1 cells. Analysis of the structure-activity relationship unveiled that a 1R,1'S configuration in bisbenzylisoquinoline alkaloids led to a notable enhancement in antiadipogenic activity. The resistance level against lipid accumulation highlighted a consistent pattern with the suppressive effect on the PPARγ expression. These activity results indicate that alkaloids from the embryo of N. nucifera seeds have a potential of antiobesity effects through PPARγ downregulation.


Assuntos
Células 3T3-L1 , Adipogenia , Alcaloides , Regulação para Baixo , Nelumbo , PPAR gama , Sementes , Animais , Sementes/química , Camundongos , Nelumbo/química , Alcaloides/farmacologia , Alcaloides/química , Estrutura Molecular , Regulação para Baixo/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/química , Benzilisoquinolinas/isolamento & purificação , Relação Estrutura-Atividade
13.
Sci Rep ; 14(1): 6000, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472367

RESUMO

Oriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.


Assuntos
Alcaloides , Benzilisoquinolinas , Nanopartículas Metálicas , Nanopartículas , Papaver , Papaver/genética , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Morfina/metabolismo , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Expressão Gênica
14.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 205-211, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430024

RESUMO

Gouty arthritis (GA) is an inflammatory disease caused by the deposition of monosodium urate (MSU) crystals into joints. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from the root of Stephania tetrandra and can exert an anti-inflammatory function in different diseases. Nevertheless, the specific function of TET in GA remains unclear. We established the GA mouse model by MSU injection into joints of mice. Paw volume and gait score were detected for measuring the degree of joint swelling and the situation of joint dysfunction. Western blot were utilized to test the alterations of M1-related factors (IL-6, IL-1ß, TNF-α, IL-12, and iNOS) and M2-related factors (Mgl1, Mgl2, Pgc1-ß, Arg-1, and IL-10). The activity of NF-κB p65 in tissues was determined. The interaction of NF-κB p65 and Lcp1 was measured by ChIP and luciferase reporter assay. Lcp1 KO mice were utilized to detect the effect of Lcp1 depletion on GA process. TET treatment markedly suppressed MSU-induced joint swelling, joint dysfunction, and joint injury in GA mice. TET can also reduce inflammatory reactions in MUS-induced mice. Furthermore, we proved that TET facilitated M2 macrophage polarization and inhibited M1 macrophage polarization in GA mice. In addition, TET was found to inhibit NF-κB activity and NF-κB-mediated Lcp1 expression. Lcp1 knockdown can improve joint injury and promote M2 macrophage polarization in GA mice, while this effect was further enhanced by TET. TET alleviates inflammation and facilitates macrophage M2 polarization in GA by NF-κB-mediated Lcp1.


Assuntos
Artrite Gotosa , Benzilisoquinolinas , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Benzilisoquinolinas/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ácido Úrico/efeitos adversos , Ácido Úrico/metabolismo , Animais , Camundongos
15.
Biomed Pharmacother ; 172: 116226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301421

RESUMO

Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-ß (Aß) and tau. Aß and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aß and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aß or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aß and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aß and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aß42 and tau K18. We verified the effect of neferine on Aß fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aß42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aß and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aß and tau pathology.


Assuntos
Doença de Alzheimer , Benzilisoquinolinas , Síndromes Neurotóxicas , Humanos , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Dispositivos Lab-On-A-Chip , Tecnologia
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 33-38, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387896

RESUMO

OBJECTIVE: To explore the role of bone marrow mesenchymal stem cells (BMSC),an essential element of the bone marrow microenvironment, in multidrug resistance(MDR) of K562 cells, as well as the reversal effect of tetrandrine (TET) on BMSC-mediated MDR and its potential mechanism. METHODS: A mixed co-culture system and a transwell co-culture system for BMSC and K562 cells were established, and the cells were divided into different groups and treated with daunorubicin (DNR) alone or combined with TET and DNR. The CCK-8 assay was used to detect the proliferation of K562 cells in each group, and the cell inhibition rate was calculated. Cytometric bead array (CBA) was used to detect the expression levels of IFN, IL-2, IL-6 and IL-10 in the supernatant of different groups. RT-qPCR and Western blot were used to detected the expression of STAT3 at mRNA and protein levels, respectively. RESULTS: Compared with K562+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR group was significantly decreased (P < 0.05), while the levels of IL-6 in the culture supernatant and phosphorylated STAT3 in K562 cells were significantly increased (P < 0.05). Compared with K562+BMSC+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR+TET group was significantly increased (P < 0.05), while the level of IL-6 and phosphorylated STAT3 was significantly decreased (P < 0.05). CONCLUSION: BMSC can promote the drug resistance of leukemia cells, and TET may reverse the BMSC-mediated drug resistance via inhibiting IL-6/STAT3 signaling pathway.


Assuntos
Benzilisoquinolinas , Leucemia , Humanos , Interleucina-6 , Resistencia a Medicamentos Antineoplásicos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Daunorrubicina/farmacologia , Células K562 , Leucemia/tratamento farmacológico , Microambiente Tumoral
17.
Cell Rep ; 43(3): 113832, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38381605

RESUMO

Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Stephania , Tamanho do Genoma , Cariótipo , Filogenia
18.
Nat Commun ; 15(1): 1537, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378731

RESUMO

Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.


Assuntos
Alphacoronavirus , Benzodioxóis , Benzilisoquinolinas , Stephania , Animais , Suínos , China/epidemiologia , SARS-CoV-2 , Antivirais/farmacologia
19.
Drug Dev Ind Pharm ; 50(2): 135-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235554

RESUMO

OBJECTIVE: Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood-brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. SIGNIFICANCE: Provide a new treatment method for drug-resistant brain gliomas. METHODS: In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. RESULTS: The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. CONCLUSIONS: BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Canfanos , Glioma , Humanos , Docetaxel , Micelas , Glioma/tratamento farmacológico , Glioma/patologia , Encéfalo , Linhagem Celular Tumoral
20.
Chem Biodivers ; 21(2): e202301279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190837

RESUMO

For years, crop protection from pest attack, has been dominated by the use of synthetic insecticides. However, many of them can cause severe environmental problems and human health. In this context, the use of plant extracts constitutes an alternative to avoid this kind of contaminants. In this work, we investigated the chemical constituents and insecticidal activity of different extracts of leaves and stems of Argemone ochroleuca Sweet (Papaveraceae) against three economically important pests Sitophilos zeamais (Coleoptera:Curculionidae), Galleria mellonella (Lepidoptera:Pyralidae) and Xyleborus ferrugineus (Coleoptera:Scolytidae). A GC-MS analysis mostly revealed the presence benzylisoquinoline alkaloids such as allocryptopine, protopine, among others. For the insecticidal activity, after nine hours of contact, the methanolic leaves extract showed a 100 % of mortality, followed by the dichloromethane stems extract with up to 93 % of mortality. The results suggest that the benzylisoquinoline alkaloids are involved in the insecticidal activity through the octopaminergic system of the tested insects.


Assuntos
Alcaloides , Argemone , Benzilisoquinolinas , Inseticidas , Mariposas , Papaveraceae , Gorgulhos , Animais , Humanos , Inseticidas/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA