Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
J Mater Sci Mater Med ; 32(9): 120, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495414

RESUMO

Polyetheretherketone (PEEK) is an important material applied in orthopedic applications, as it posses favorable properties for orthopedic implants, e.g., radiolucency and suitable elastic modulus. However, PEEK exhibits insufficient osteogenesis and osteointegration that limits its clinical applications. In this study, we aimed to enhance the osteogenisis of PEEK by using a surface coating approach. Nanocomposite coating composed of albumin/lithium containing bioactive glass nanospheres was fabricated on PEEK through dip-coating method. The presence of nanocomposite coating on PEEK was confirmed by SEM, FTIR, and XRD techniques. Nanocomposite coatings significantly enhanced hydrophilicity and roughness of PEEK. The nanocomposite coatings also enhanced adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells due to the presence of bioactive glass nanospheres and the BSA substrate film. The results indicate the great potential of the nanocomposite coating in enhancing osteogenesis and osteointegration of PEEK implants.


Assuntos
Albuminas/farmacologia , Benzofenonas/farmacologia , Cerâmica/farmacologia , Lítio/farmacologia , Osteogênese/efeitos dos fármacos , Polímeros/farmacologia , Albuminas/química , Animais , Benzofenonas/síntese química , Benzofenonas/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cerâmica/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Sinergismo Farmacológico , Lítio/química , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/química , Nanosferas/química , Osseointegração/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
2.
Chem Res Toxicol ; 34(4): 1140-1149, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33684284

RESUMO

Benzophenone-1 (BP-1), one of the commonly used ultraviolet filters, has caused increasing public concern due to frequently detected residues in environmental and recreational waters. Its susceptibility to residual chlorine and the potential to subsequently trigger endocrine disruption remain unknown. We herein investigated the chlorination of BP-1 in swimming pool water and evaluated the endocrine disruption toward the human androgen receptor (AR). The structures of monochlorinated (P1) and dichlorinated (P2) products were separated and characterized by mass spectrometry and 1H-1H NMR correlation spectroscopy. P1 and P2 exhibited significantly higher antiandrogenic activity in yeast two-hybrid assays (EC50, 6.13 µM and 9.30 µM) than did BP-1 (12.89 µM). Our 350 ns Gaussian accelerated molecular dynamics simulations showed the protein dynamics in a long-time scale equilibrium, and further energy calculations revealed that although increased hydrophobic interactions are primarily responsible for enhanced binding affinities between chlorinated products and the AR ligand binding domain, the second chloride in P2 still hinders the complex motion because of the solvation penalty. The mixture of BP-1-P1-P2 elicited additive antiandrogenic activity, well fitted by the concentration addition model. P1 and P2 at 1 µM consequently downregulated the mRNA expression of AR-regulated genes, NKX3.1 and KLK3, by 1.7-9.1-fold in androgen-activated LNCaP cells. Because chlorination of BP-1 occurs naturally by residual chlorine in aquatic environments, our results regarding enhanced antiandrogenic activity and disturbed AR signaling provided evidence linking the use of personal care products with potential health risks.


Assuntos
Benzofenonas/farmacologia , Disruptores Endócrinos/farmacologia , Simulação de Dinâmica Molecular , Receptores Androgênicos/metabolismo , Benzofenonas/síntese química , Benzofenonas/química , Sobrevivência Celular/efeitos dos fármacos , Disruptores Endócrinos/síntese química , Disruptores Endócrinos/química , Halogenação , Humanos , Estrutura Molecular , Células Tumorais Cultivadas
3.
Bioorg Med Chem ; 33: 116035, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550084

RESUMO

Microglia are the principle cell type driving sustained neuroinflammation in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. Interestingly, microglia locked into a chronic M1 pro-inflammatory phenotype significantly up-regulate the cannabinoid receptor 2 (CB2) expression. Our approach to exploiting CB2 as a therapeutic target in neuroinflammatory diseases focuses on the development of selective CB2 inverse agonists to shift microglia bias to a M2 pro-wound healing phenotype. Herein we report work designed to refine the structure activity relationship of the 2,6-dihydroxy-biphenyl-aryl-methanone CB2 inverse agonist scaffold. A series of analogs of our lead compound SMM-189 were synthesized and measured for affinity/selectivity, potency, and efficacy in regulating cAMP production and ß-arrestin recruitment. In this series compound 40 demonstrated a significant increase in potency and efficacy for cAMP stimulation compared to SMM-189. Akin to our lead SMM-189, this compound was highly efficacious in biasing microglia to an M2 pro-wound healing phenotype in LPS stimulated cell lines. These results advance our understanding of the structure-activity relationship of the 2,6-dihydroxy-biphenyl-aryl-methanone scaffold and provide further support for regulating microglia activation using CB2 inverse agonists.


Assuntos
Benzofenonas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Animais , Benzofenonas/síntese química , Benzofenonas/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Nat Prod Rep ; 38(3): 510-527, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931541

RESUMO

Covering: 2010 to 2020This review article describes how cationic rearrangement reactions have been used in natural product total synthesis over the last decade as a case study for the many productive ways by which isomerization reactions are enabling for synthesis. This review argues that isomerization reactions in particular are well suited for computational evaluation, as relatively simple calculations can provide significant insight.


Assuntos
Produtos Biológicos/química , Benzofuranos/síntese química , Benzofenonas/síntese química , Benzoquinonas/síntese química , Produtos Biológicos/síntese química , Cátions , Ciclização , Diterpenos do Tipo Caurano/síntese química , Alcaloides Indólicos/síntese química , Isomerismo , Triterpenos Pentacíclicos/síntese química , Sesquiterpenos/química , Estilbenos/síntese química , Terpenos/síntese química
6.
Pak J Pharm Sci ; 33(3): 1147-1153, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191241

RESUMO

Fifteen benzophenone thiosemicarbazones were synthesized and their in vitro antiglycation activity was evaluated. The most active compound 2 (IC50 = 118.15±2.41µM) showed two folds potent activity than the standard, rutin (IC50 = 294.5±1.5µM). Compounds 1 and 3-7 showed good to moderate antiglycation activity in the range of 204.14 - 488.54µM. These compounds were also evaluated for antioxidant activity. Their structure-activity relationships have been developed. The results reveal the potential of these compounds as leads for further studies towards the development of antidiabetic drugs.


Assuntos
Antioxidantes/farmacologia , Benzofenonas/farmacologia , Hipoglicemiantes/farmacologia , Tiossemicarbazonas/farmacologia , Antioxidantes/síntese química , Benzofenonas/síntese química , Compostos de Bifenilo/química , Produtos Finais de Glicação Avançada/química , Hipoglicemiantes/síntese química , Estrutura Molecular , Picratos/química , Soroalbumina Bovina/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química
7.
Bioorg Chem ; 104: 104265, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919128

RESUMO

A series of benzophenone derivatives bearing naphthalene moiety were designed, synthesized, characterized by 1H NMR, 13C NMR, and HRMS and evaluated for their antiproliferative activity against human breast cancer cell line (MCF-7). Most of the tested derivatives showed good to moderate cytotoxicity against MCF-7 cell line. Among them, compound 4u (IC50 = 1.47 ± 0.14 µM) was found to be the most active compound, which is more active than the standard drug cisplatin (IC50 = 15.24 ± 1.27 µM). In vitro tubulin polymerization inhibition assay, EBI competition assay, cell cycle analysis, and cell apoptosis assay identified that compound 4u was a new tubulin polymerization inhibitor by targeting the colchicine binding site. Besides, molecular docking study showed that compound 4u has high binding affinities with the colchicine binding site of tubulin through hydrogen bond, cation-π, and hydrophobic interaction.


Assuntos
Antineoplásicos/farmacologia , Benzofenonas/farmacologia , Desenho de Fármacos , Naftalenos/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofenonas/síntese química , Benzofenonas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftalenos/química , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Eur J Med Chem ; 208: 112671, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32920341

RESUMO

Transcription is an essential biological process in bacteria requiring a core enzyme, RNA polymerase (RNAP). Bacterial RNAP is catalytically active but requires sigma (σ) factors for transcription of natural DNA templates. σ factor binds to RNAP to form a holoenzyme which specifically recognizes a promoter, melts the DNA duplex, and commences RNA synthesis. Inhibiting the binding of σ to RNAP is expected to inhibit bacterial transcription and growth. We previously identified a triaryl hit compound that mimics σ at its major binding site of RNAP, thereby inhibiting the RNAP holoenzyme formation. In this study, we modified this scaffold to provide a series of benzyl and benzoyl benzoic acid derivatives possessing improved antimicrobial activity. A representative compound demonstrated excellent activity against Staphylococcus epidermidis with minimum inhibitory concentrations reduced to 0.5 µg/mL, matching that of vancomycin. The molecular mechanism of inhibition was confirmed using biochemical and cellular assays. Low cytotoxicity and metabolic stability of compounds demonstrated the potential for further studies.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoatos/farmacologia , Benzofenonas/farmacologia , Compostos de Benzil/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Fator sigma/metabolismo , Animais , Bactérias/efeitos dos fármacos , Benzoatos/síntese química , Benzoatos/metabolismo , Benzofenonas/síntese química , Benzofenonas/metabolismo , Compostos de Benzil/síntese química , Compostos de Benzil/metabolismo , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos
9.
J Med Chem ; 63(14): 7695-7720, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32633513

RESUMO

Formation of a bacterial RNA polymerase (RNAP) holoenzyme by a catalytic core RNAP and a sigma (σ) initiation factor is essential for bacterial viability. As the primary binding site for the housekeeping σ factors, the RNAP clamp helix domain represents an attractive target for novel antimicrobial agent discovery. Previously, we designed a pharmacophore model based on the essential amino acids of the clamp helix, such as R278, R281, and I291 (Escherichia coli numbering), and identified hit compounds with antimicrobial activity that interfered with the core-σ interactions. In this work, we rationally designed and synthesized a class of triaryl derivatives of one hit compound and succeeded in drastically improving the antimicrobial activity against Streptococcus pneumoniae, with the minimum inhibitory concentration reduced from 256 to 1 µg/mL. Additional characterization of antimicrobial activity, inhibition of transcription, in vitro pharmacological properties, and cytotoxicity of the optimized compounds demonstrated their potential for further development.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Multimerização Proteica/efeitos dos fármacos , Fator sigma/metabolismo , Sequência de Aminoácidos , Compostos de Anilina/síntese química , Compostos de Anilina/farmacologia , Antibacterianos/síntese química , Proteínas de Bactérias/química , Benzofenonas/síntese química , Benzofenonas/farmacologia , Linhagem Celular Tumoral , RNA Polimerases Dirigidas por DNA/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Alinhamento de Sequência , Fator sigma/química , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/farmacologia
10.
Org Biomol Chem ; 17(47): 10009-10012, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31755515

RESUMO

Two novel polyketones, rhizophols A-B (1-2), were isolated from the endophytic fungus Cytospora rhizophorae A761. They shared unprecedented poly-substituted benzophenone skeletons featuring an epoxy isopentyl unit and a propionyl moiety. Their structures were evidenced by extensive spectroscopic analyses, X-ray diffraction, and quantum energy calculation. Moreover, compound 1 was proved to be a promising lead compound for novel antioxidant drugs.


Assuntos
Antioxidantes/farmacologia , Ascomicetos/química , Benzofenonas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Picratos/antagonistas & inibidores , Antioxidantes/síntese química , Antioxidantes/química , Benzofenonas/síntese química , Benzofenonas/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Teoria Quântica
11.
J Am Chem Soc ; 141(28): 11315-11321, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264859

RESUMO

Regiodivergent photocyclization of dearomatized acylphloroglucinol substrates has been developed to produce type A polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives using an excited-state intramolecular proton transfer (ESIPT) process. Using this strategy, we achieved the enantioselective total syntheses of the type A PPAPs (-)-nemorosone and (-)-6-epi-garcimultiflorone A. Diverse photocyclization substrates have been investigated leading to divergent photocyclization processes as a function of tether length. Photophysical studies were performed, and photocyclization mechanisms were proposed based on investigation of various substrates as well as deuterium-labeling experiments.


Assuntos
Benzofenonas/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Floroglucinol/síntese química , Benzofenonas/química , Compostos Heterocíclicos com 3 Anéis/química , Conformação Molecular , Floroglucinol/análogos & derivados , Floroglucinol/química , Processos Fotoquímicos , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 58(25): 8581-8584, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30969469

RESUMO

Natural products represent a rich source of antibiotics that address versatile cellular targets. The deconvolution of their targets via chemical proteomics is often challenged by the introduction of large photocrosslinkers. Here we applied elegaphenone, a largely uncharacterized natural product antibiotic bearing a native benzophenone core scaffold, for affinity-based protein profiling (AfBPP) in Gram-positive and Gram-negative bacteria. This study utilizes the alkynylated natural product scaffold as a probe to uncover intriguing biological interactions with the transcriptional regulator AlgP. Furthermore, proteome profiling of a Pseudomonas aeruginosa AlgP transposon mutant provided unique insights into the mode of action. Elegaphenone enhanced the elimination of intracellular P. aeruginosa in macrophages exposed to sub-inhibitory concentrations of the fluoroquinolone antibiotic norfloxacin.


Assuntos
Antibacterianos/farmacologia , Benzofenonas/farmacologia , Produtos Biológicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzofenonas/síntese química , Benzofenonas/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Norfloxacino/antagonistas & inibidores , Norfloxacino/química , Norfloxacino/farmacologia , Pseudomonas aeruginosa/citologia , Relação Estrutura-Atividade
13.
ChemMedChem ; 14(10): 1041-1048, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30950201

RESUMO

Breast and prostate cancers are frequently treated with chemotherapy. Several novel chemicals are being reported for this purpose, particularly synthetic and natural benzophenones. This work reports the synthesis of substituted 2-hydroxybenzophenones through 1,4-conjugate addition/intramolecular cycloaddition/dehydration of nitromethane on key intermediate chromones. Structures were extensively studied by means of 2D NMR spectroscopy and single-crystal XRD. Their cytotoxicity was evaluated in vitro in two breast cancer cell lines (MDA-MB-231 and T47-D) and one prostate cancer cell line (PC3). The most potent compound exhibited good cytotoxic effects against the three cancer cell lines (IC50 values ranging from 12.09 to 26.49 µm) and induced cell-cycle retardation only on prostate cancer cells, which suggested that it might exert cell-type-specific effects.


Assuntos
Antineoplásicos/química , Benzofenonas/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose , Benzofenonas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Reação de Cicloadição , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Masculino , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Estrutura Molecular , Nitroparafinas/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 29(6): 826-831, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30704813

RESUMO

DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.


Assuntos
Acetatos/química , Compostos Benzidrílicos/química , Benzofenonas/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Salicilatos/química , Acetatos/síntese química , Compostos Benzidrílicos/síntese química , Benzofenonas/síntese química , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Salicilatos/síntese química
15.
Bioorg Med Chem ; 27(6): 1009-1022, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738655

RESUMO

This study deals with the synthesis of benzophenone sulfonamides hybrids (1-31) and screening against urease enzyme in vitro. Studies showed that several synthetic compounds were found to have good urease enzyme inhibitory activity. Compounds 1 (N'-((4'-hydroxyphenyl)(phenyl)methylene)-4''-nitrobenzenesulfonohydrazide), 2 (N'-((4'-hydroxyphenyl)(phenyl)methylene)-3''-nitrobenzenesulfonohydrazide), 3 (N'-((4'-hydroxyphenyl)(phenyl)methylene)-4''-methoxybenzenesulfonohydrazide), 4 (3'',5''-dichloro-2''-hydroxy-N'-((4'-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 6 (2'',4''-dichloro-N'-((4'-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 8 (5-(dimethylamino)-N'-((4-hydroxyphenyl)(phenyl)methylene)naphthalene-1-sulfono hydrazide), 10 (2''-chloro-N'-((4'-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 12 (N'-((4'-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide) have found to be potently active having an IC50 value in the range of 3.90-17.99 µM. These compounds showed superior activity than standard acetohydroxamic acid (IC50 = 29.20 ±â€¯1.01 µM). Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease enzyme. Structures of all the synthetic compounds were elucidated by 1H NMR, 13C NMR, EI-MS and FAB-MS spectroscopic techniques.


Assuntos
Benzofenonas/química , Benzofenonas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sporosarcina/enzimologia , Urease/antagonistas & inibidores , Benzofenonas/síntese química , Inibidores Enzimáticos/síntese química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Sporosarcina/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Urease/metabolismo
16.
Bioorg Chem ; 86: 401-409, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769265

RESUMO

The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-ß-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases. In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms. Compound 3 proved to be very potent and selective towards CYP11B1, and was thus selected for further optimization via appropriate decoration of the scaffold, leading to new potent 4'-substituted derivatives. In this second series, 4 and 8, carrying a methoxy group and a phenyl ring, respectively, proved to be low-nanomolar inhibitors of CYP11B1, despite a slight decrease in selectivity against CYP11B2. Moreover, unlike the benzophenones of the first series, the 4'-substituted derivatives also proved to be selective for CYP11B enzymes, showing very weak inhibition of CYP19 and CYP17. Notably, the promising result of a preliminary scratch test performed on compound 8 confirmed the potential of this compound as a wound-healing promoter.


Assuntos
Benzofenonas/farmacologia , Inibidores Enzimáticos/farmacologia , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Xantonas/farmacologia , Benzofenonas/síntese química , Benzofenonas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Esteroide 11-beta-Hidroxilase/metabolismo , Relação Estrutura-Atividade , Xantonas/química
17.
Angew Chem Int Ed Engl ; 58(7): 2144-2148, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30600880

RESUMO

To show the synthetic utility of palladium/norbornene (Pd/NBE) cooperative catalysis, here we report concise syntheses of indenone-based natural products, pauciflorol F and acredinone A, which are enabled by direct annulation between aryl iodides and unsaturated carboxylic acid anhydrides. Compared to the previous indenone-preparation approaches, this method allows simple aryl iodides to be used as substrates with complete control of the regioselectivity. The total synthesis of acredinone A features two different Pd/NBE-catalyzed ortho acylation reactions for constructing penta-substituted arene cores, including the development of a new ortho acylation/ipso borylation.


Assuntos
Benzofenonas/síntese química , Hidrocarbonetos Iodados/química , Indenos/síntese química , Norbornanos/química , Paládio/química , Estilbenos/síntese química , Benzofenonas/química , Catálise , Indenos/química , Estrutura Molecular , Estilbenos/química
18.
Med Chem ; 15(2): 162-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30081790

RESUMO

BACKGROUND: Inflammation is a biological rejoinder of vascular tissues against destructive agents e.g. irritants, damaged cell or pathogens. During inflammation, respiratory burst occurs by activated phagocytes which help to destroy invading pathogens. Phagocytic cells such as neutrophils and macrophages are one of the major sources of reactive oxygen species (ROS) and nitric oxide (NO). Normally, the redox environment is maintained by various antioxidant defense systems, however, these reactive oxygen species may be destructive and can lead to various pathological conditions. METHODS: Benzophenone esters and sulfonates (1-18) were synthesized through one pot synthesis by reacting 4-hydroxy benzophenone either different benzoyl chloride or sulfonyl chloride. These synthetic compounds were evaluated for their in vitro immunosuppressive potential on two parameters of innate immune response including inhibition of intracellular reactive oxygen species (ROS) and nitric oxide (NO). ROS were induced in polymorphonuclear leukocytes (PMNs) isolated from human whole blood by serum opsonized zymosan stimulation, whereas NO were produced in J774.2 cells by lipopolysachharides (LPS) stimulation. Moreover, cytotoxicity of compounds was also determined using NIH-3T3 fibroblast cells (ATCC, Manassas, USA) was evaluated by using the standard MTT colorimetric assay. RESULTS: All compounds inhibited the production of ROS at various extent among which compounds 2, 5, 6, 8, 10, 13 and 16 were found to be the potent inhibitors of ROS with IC50 values ranging between (1.0 - 2.2 µg/mL) as compared to ibuprofen (IC50 = 2.5 ± 0.6 µg/mL) as the standard drug. Compounds 2, 7, 11, 13, 14 and 18 showed good inhibition of NO production with % inhibition values ranging between (63.6% - 76.7%) at concentration of 25 µg/mL as compared to NG-monomethyl-Larginine (L-NMMA 65.6 ± 1.1 µg/mL) as the standard. All other derivatives showed moderate to low level of inhibition on both tested parameters. Cytotoxicity activity also showed nontoxicity of synthetic compounds. Structures of all the synthetic compounds were confirmed through 1H-NMR, 13C-NMR, EI-MS and HREI-MS spectroscopic techniques. CONCLUSION: Compounds 2 and 13 were found to be good dual antiinflammatory (ROS and NO) agent. However, compounds 5, 6, 8, 10 and 16 were found to be selectively active for ROS inhibitory studies. Compounds 7, 11, 14 and 18 were discriminatory active at NO inhibition assay. These initial findings of antiinflammatory activity concluded that these compounds might have the potential to develop a novel non-steroidal antiinflammatory drugs (NSAIDs), non-acidic antiinflammatory agent. Most active compounds 2, 5-8, 10, 13, 14 and 16 showed nontoxicity of synthetic compounds.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Benzofenonas/síntese química , Benzofenonas/farmacologia , Ésteres/química , Ácidos Sulfônicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Benzofenonas/química , Técnicas de Química Sintética , Camundongos , Células NIH 3T3 , Óxido Nítrico/metabolismo , Fagócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 28(21): 3431-3435, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30266542

RESUMO

To date, the development of photoaffinity ligands targeting the human serotonin transporter (hSERT), a key protein involved in disease states such as depression and anxiety, have been radioisotope-based (i.e., 3H or 125I). This letter instead highlights three derivatives of the selective serotonin reuptake inhibitor (SSRI) (S)-citalopram that were rationally designed and synthesized to contain a photoreactive benzophenone or an aryl azide for protein target capture via photoaffinity labeling and a terminal alkyne or an aliphatic azide for click chemistry-based proteomics. Specifically, clickable benzophenone-based (S)-citalopram photoprobe 6 (hSERT Ki = 0.16 nM) displayed 11-fold higher binding affinity at hSERT when compared to (S)-citalopram (hSERT Ki = 1.77 nM), and was subsequently shown to successfully undergo tandem photoaffinity labeling-biorthogonal conjugation using purified hSERT. Given clickable photoprobes can be used for various applications depending on which reporter is attached by click chemistry subsequent to photoaffinity labeling, photoprobe 6 is expected to find value in structure-function studies and other research applications involving hSERT (e.g., imaging).


Assuntos
Azidas/química , Benzofenonas/química , Citalopram/análogos & derivados , Marcadores de Fotoafinidade/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Azidas/síntese química , Azidas/efeitos da radiação , Benzofenonas/síntese química , Benzofenonas/efeitos da radiação , Citalopram/síntese química , Citalopram/efeitos da radiação , Química Click , Células HEK293 , Humanos , Ligantes , Marcadores de Fotoafinidade/síntese química , Marcadores de Fotoafinidade/efeitos da radiação , Estereoisomerismo , Raios Ultravioleta
20.
Molecules ; 23(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049981

RESUMO

A series of novel benzophenone derivatives containing a thiazole heterocyclic nucleus were designed by molecular hybridization. Molecular docking studies have demonstrated the inhibitory potential of the designed compounds against cyclooxygenase (COX) isoenzymes. These compounds were synthesized, characterized, and evaluated for their anti-inflammatory properties by the croton oil-induced ear edema assay to examine their effect on both prostaglandin (PG) production and neutrophils recruitment. The thiazole derivatives displayed a potent effect in terms of reducing ear edema. The analysis suggested that the presence of 4-phenyl-2-hydrazinothiazole and the absence of C4'-OCH3 on the benzophenone derivative structure are strongly related to the inhibition of PG production. In addition, the derivatives 2e, 3a and 3c concomitantly inhibit PG production and neutrophil recruitment, which may be a mechanism of action better than of common NSAIDs due to their inability to inhibit the neutrophil recruitment. Thus, these compounds can be considered as potential lead compounds toward the development of new anti-inflammatory drugs with an innovating mechanism of action.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Desenho de Fármacos , Edema/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Anti-Inflamatórios/síntese química , Benzofenonas/síntese química , Sítios de Ligação , Domínio Catalítico , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Modelos Animais de Doenças , Edema/tratamento farmacológico , Isomerismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA