Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
1.
PLoS One ; 19(5): e0302992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713664

RESUMO

Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.


Assuntos
Besouros , Oócitos , Animais , Besouros/genética , Besouros/metabolismo , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Feminino , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Insulina/genética , Densidade Demográfica , Peptídeos Semelhantes à Insulina
2.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38680096

RESUMO

The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.


Assuntos
Besouros , Drosophila melanogaster , Metabolismo Energético , Animais , Abelhas/enzimologia , Abelhas/metabolismo , Abelhas/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Besouros/enzimologia , Besouros/metabolismo , Besouros/fisiologia , Temperatura Alta
3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673947

RESUMO

Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.


Assuntos
Monoterpenos Bicíclicos , Besouros , Receptores Odorantes , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/metabolismo , Monoterpenos Bicíclicos/farmacologia , Besouros/efeitos dos fármacos , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Simulação de Acoplamento Molecular , Monoterpenos/química , Monoterpenos/farmacologia , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674138

RESUMO

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Assuntos
Besouros , Proteínas de Insetos , Receptores Odorantes , Transcriptoma , Animais , Besouros/genética , Besouros/metabolismo , Besouros/crescimento & desenvolvimento , Masculino , Feminino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Antenas de Artrópodes/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674140

RESUMO

During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.


Assuntos
Besouros , Ecdisona , Interferência de RNA , Receptores de Esteroides , Transdução de Sinais , Animais , Besouros/metabolismo , Besouros/genética , Feminino , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Oviposição/efeitos dos fármacos , Casca de Ovo/metabolismo , Ovário/metabolismo
6.
Photochem Photobiol Sci ; 23(4): 719-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441849

RESUMO

The bioluminescence system of luminescent beetles has extensive applications in biological imaging, protein labeling and drug screening. To explore wild luciferases with excellent catalytic activity and thermal stability, we cloned the luciferase of Pygoluciola qingyu, one species living in areas of high temperature and with strong bioluminescence, by combining transcriptomic sequencing and reverse transcription polymerase chain reaction (RT-PCR). The total length of luciferase gene is 1638 bp and the luciferase consists 544 amino acids. The recombinant P. qingyu luciferase was produced in vitro and its characteristics were compared with those of eight luciferases from China firefly species and two commercial luciferases. Compared with these luciferases, the P. qingyu luciferase shows the highest luminescence activity at room temperature (about 25-28 â„ƒ) with similar KM value for D-luciferin and ATP to the Photinus pyralis luciferase. The P. qingyu luciferase activity was highest at 35 â„ƒ and can keep high activity at 30-40 â„ƒ, which suggests the potential of P. qingyu luciferase for in vivo and cell application. Our results provide new insights into P. qingyu luciferase and give a new resource for the application of luciferases.


Assuntos
Besouros , Vaga-Lumes , Animais , Vaga-Lumes/genética , Besouros/genética , Besouros/metabolismo , Sequência de Aminoácidos , Luciferases/química , Luciferases de Vaga-Lume/metabolismo , Clonagem Molecular , Medições Luminescentes
7.
Front Cell Infect Microbiol ; 14: 1360680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476166

RESUMO

Background: Insect odorant-binding proteins (OBPs) are a class of small molecular weight soluble proteins. In the past few years, OBPs had been found to work as carriers of ligands and play a crucial role in olfaction and various other physiological processes, like immunity. A subset of insect OBPs had been found to be expressed differently and play a function in immunity of fungal infection. However, there are few studies on the role of OBPs in immunity of bacterial infection. Methods: To identify the immune-related OBPs of Plagiodera versicolora after infected by Pseudomonas aeruginosa, we determined the mortality of P. versicolora to P. aeruginosa and selected the time point of 50% mortality of larvae to collect samples for RNA-seq. RNAi technology was used to investigate the function of immune-related OBPs after P. aeruginosa infection. Results: RNA-seq data shows that PverOBP18 gene significantly up-regulated by 1.8-fold and further RT-qPCR affirmed its expression. Developmental expression profile showed that the expression of PverOBP18 was highest in the pupae, followed by the female adults, and lower in the 1st-3rd larvae and male adults with lowest in eggs. Tissue expression profiling showed that PverOBP18 was dominantly expressed in the epidermis. RNAi knockdown of PverOBP18 significantly reduced the expression of bacterial recognition receptor gene PGRP and antibacterial peptide gene Attacin and reduced the resistance of P. versicolora to P. aeruginosa infection. Conclusion: Our results indicated that PverOBP18 gene increased the pathogen resistance of P. versicolora by cooperating with the immune genes and provided valuable insights into using OBPs as targets to design novel strategies for management of P. versicolora.


Assuntos
Besouros , Salix , Feminino , Masculino , Animais , Besouros/genética , Besouros/metabolismo , Odorantes , Larva , Insetos , Filogenia
8.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473803

RESUMO

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Assuntos
Besouros , Fosfotransferases (Aceptor do Grupo Álcool) , Tribolium , Animais , Tribolium/genética , Besouros/metabolismo , Ácido Mevalônico/metabolismo , Hormônios Juvenis/metabolismo
9.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458690

RESUMO

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Tornozelo , Rotenona , Besouros/genética , Besouros/metabolismo , Insetos/genética , Transcriptoma , Filogenia , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica
10.
J Agric Food Chem ; 72(11): 5682-5689, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446420

RESUMO

The chemosensory system plays an important role in the host plants location. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest that feeds exclusively on salicaceous trees. There is no function study of odorant binding proteins (OBPs) in P. versicolora. In the current study, we found that PverOBP37 has a high expression in male and female antennae, heads, and legs by quantitative real-time PCR. The binding properties of PverOBP37 to 18 host plant volatiles were determined by fluorescence competition binding assays. The results showed that PverOBP37 could bind to the host plant volatile, o-cymene. Furthermore, four candidate key amino acid residues (F8, Y50, F103, and R107) of PverOBP37 to o-cymene were identified by molecular docking. The functional assay to confirm Y50, F103, and R107 mutations were key amino acid residues of PverOBP37 involved in the binding to o-cymene. Knockdown of PverOBP37 and Y-tube behavioral bioassays of mated females led to a significantly reduced attraction to o-cymene. This study not only revealed the molecular mechanism of PverOBP37 but also suggested that PverOBP37 is essential to detect host plant volatiles as cues to search for egg-laying sites in P. versicolora.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Cimenos , Odorantes , Simulação de Acoplamento Molecular , Besouros/genética , Besouros/metabolismo , Aminoácidos/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Ligação Proteica
11.
Dev Biol ; 509: 70-84, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373692

RESUMO

Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.


Assuntos
Besouros , Metamorfose Biológica , Morfogênese , Fatores de Transcrição , Tribolium , Animais , Besouros/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Larva/metabolismo , Metamorfose Biológica/genética , Morfogênese/genética , Pupa/metabolismo , Fatores de Transcrição/metabolismo , Tribolium/genética , Regeneração/genética
12.
Chemosphere ; 352: 141499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373446

RESUMO

Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.


Assuntos
Besouros , Microbioma Gastrointestinal , Tenebrio , Triazinas , Animais , Tenebrio/metabolismo , Poliestirenos/metabolismo , Besouros/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Bactérias/metabolismo , Ingestão de Alimentos
13.
J Econ Entomol ; 117(2): 629-637, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38245820

RESUMO

Rhyzopertha dominica is a serious stored grain insect pest around the world. Real-time quantitative polymerase chain reaction (RT-qPCR) is a widely used experimental method in molecular biology for detecting the expression of target genes. As appropriate reference genes are essential for normalizing gene expression, the selection of suitable reference genes is the basis of RT-qPCR experiments. In this study, the expression profiles of 7 candidate reference genes of rps3, rps6, rps13, actin, gadph, tubulin, and 18S rRNA were analyzed under 4 different experimental conditions. The expression stability of candidate genes was evaluated using the ΔCt, GeNorm, BestKeeper, NormFinder, and RefFinder methods. The results revealed that different reference genes were suitable for various experiments. Specifically, rps3 and rps6 were appropriate for the developmental stages and all samples: 18S rRNA and rps13 for temperature-related experiments, actin and rps6 for sex-related experiments, and rps6 and gadph for starvation stress. Our results lay essential groundwork for the normalization of RT-qPCR analyses and contribute to genomic and gene functional research of R. dominica.


Assuntos
Actinas , Besouros , Animais , Actinas/genética , Actinas/metabolismo , RNA Ribossômico 18S/genética , Besouros/genética , Besouros/metabolismo , Genes de Insetos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Perfilação da Expressão Gênica/métodos
14.
Insect Biochem Mol Biol ; 166: 104087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295884

RESUMO

Chitinases (CHT) comprise a large gene family in insects and have been classified into at least eleven subgroups. Many studies involving RNA interference (RNAi) have demonstrated that depletion of group I (CHT5s) and group II (CHT10s) CHT transcripts causes lethal molting arrest in several insect species including the red flour beetle, Tribolium castaneum, presumably due to failure of degradation of chitin in their old cuticle. In this study we investigated the functions of CHT5 and CHT10 in turnover of chitinous cuticle in T. castaneum during embryonic and post-embryonic molting stages. RNAi and transmission electron microscopic (TEM) analyses indicate that CHT10 is required for cuticular chitin degradation at each molting period analyzed, while CHT5 is essential for pupal-adult molting only. We further analyzed the functions of these genes during embryogenesis in T. castaneum. Real-time qPCR analysis revealed that peak expression of CHT10 occurred prior to that of CHT5 during embryonic development as has been observed at post-embryonic molting periods in several other insect species. With immunogold-labeling TEM analysis using a fluorescein isothiocyanate-conjugated chitin-binding domain protein (FITC-CBD) probe, chitin was detected in the serosal cuticle but not in any other regions of the eggshell including the chorion and vitelline membrane layers. Injection of double-stranded RNA (dsRNA) for CHT5 (dsCHT5), CHT10 (dsCHT10) or their co-injection (dsCHT5/10) into mature adult females had no effect on their fecundity and the resulting embryos developed normally inside the egg. There were no obvious differences in the morphology of the outer chorion, inner chorion and vitelline membrane among eggs from these dsRNA-treated females. However, unlike dsCHT5 eggs, dsCHT10 and dsCHT5/10 eggs exhibited failure of turnover of the serosal cuticle in which the horizontal chitinous laminae remained intact, resulting in lethal embryo hatching defects. These results indicate that group I CHT5 is essential for pupal-adult molting, whereas group II CHT10 plays an essential role in cuticular chitin degradation in T. castaneum during both embryonic hatching and all of the post-embryonic molts. CHT10 can serve in place of CHT5 in chitin degradation, except during the pupal-adult molt when both enzymes are indispensable to complete eclosion.


Assuntos
Quitinases , Besouros , Tribolium , Feminino , Animais , Tribolium/metabolismo , Besouros/metabolismo , Quitinases/genética , Quitinases/metabolismo , Quitina/metabolismo , Muda/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
15.
Arch Insect Biochem Physiol ; 115(1): e22072, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288486

RESUMO

Dried fruit beetle, Carpophilus hemipterus (Linnaeus, 1758) (Coleoptera: Nitidulidae), is a serious pest of ripened fresh fruit in the orchard and dried fruit in postprocessing storage. Despite the economic impact and widespread distribution of C. hemipterus, there is a lack of functional genomics research seeking to elucidate features of molecular physiology for improved pest management. Here, we report the characterization of the gene named Vermilion in C. hemipterus (ChVer) that encodes for tryptophan 2,3-dioxygenase. The Vermilion is frequently used as a visual marker for genomics approaches as tryptophan 2,3-dioxygenase is involved in the biosynthesis of eye coloration pigments in insects. We identified 1628 bp long full-length transcript of ChVer from transcriptomic database of C. hemipterus. The expression analysis among adult body parts revealed peak ChVer expression in head compared to thorax and abdomen, which is consistent with its role. Among the C. hemipterus developmental stages, peak ChVer expression was observed in first instar larva, second instar larva, and adult male stages, whereas the lowest levels of expression were seen in third instar larva, prepupa, and pupa. The nanoinjection of ChVer double-stranded RNA in larval C. hemipterus resulted in a significant reduction in ChVer transcript levels as well as caused a loss of eye color, that is, the white-eyed phenotype in adults. Characterization of visually traceable marker gene and robust RNA interference response seen in this study will enable genomics research is this important pest.


Assuntos
Besouros , Dioxigenases , Masculino , Animais , Besouros/genética , Besouros/metabolismo , Triptofano Oxigenase/genética , Triptofano/genética , Triptofano/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Interferência de RNA , Larva/genética
16.
GM Crops Food ; 15(1): 15-31, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38238889

RESUMO

Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.


Assuntos
Besouros , Zea mays , Animais , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Besouros/metabolismo , Medição de Risco
17.
Int J Biol Macromol ; 254(Pt 1): 127505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863136

RESUMO

Calosoma maximoviczi, a predatory pest beetle, poses a significant threat to wild silk farm production due to its predation on wild silkworms. Given the coexistence of this species with beneficial silkworms in the farm orchards, chemical pesticides are not an ideal solution for controlling its population. In this study, we employed a comprehensive multi-target RNA interference (RNAi) approach to disrupt the olfactory perception of C. maximoviczi through independently silencing 16 odorant receptors (ORs) in the respective genders. Specifically, gene-specific siRNAs were designed to target a panel of ORs, allowing us to investigate the specific interactions between odorant receptors and ligands within this species. Our investigation led to identifying four candidate siOR groups that effectively disrupted the beetle's olfactory tracking of various odorant ligands associated with different trophic levels. Furthermore, we observed sex-specific differences in innate RNAi responses reflected by subsequent gene expression, physiological and behavioral consequences, underscoring the complexity of olfactory signaling and emphasizing the significance of considering species/sex-specific traits when implementing pest control measures. These findings advance our understanding of olfactory coding patterns in C. maximoviczi beetles and establish a foundation for future research in the field of pest management strategies.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Masculino , Besouros/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Comportamento Predatório , Olfato/genética , Ligantes
18.
Artigo em Inglês | MEDLINE | ID: mdl-38096641

RESUMO

Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.


Assuntos
Besouros , Receptores Odorantes , Gorgulhos , Animais , Transcriptoma , Simpatria , Perfilação da Expressão Gênica , Besouros/genética , Besouros/metabolismo , Gorgulhos/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
19.
Insect Biochem Mol Biol ; 165: 104061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151136

RESUMO

Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.


Assuntos
Besouros , Gorgulhos , Animais , Besouros/metabolismo , Gorgulhos/metabolismo , Perfilação da Expressão Gênica , Terpenos/metabolismo , Expressão Gênica
20.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069247

RESUMO

Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 µM), followed by styrene (Ki = 11.37 µM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.


Assuntos
Besouros , Mariposas , Receptores Odorantes , Gorgulhos , Feminino , Animais , Masculino , Proteínas de Transporte/metabolismo , Besouros/metabolismo , Gorgulhos/genética , Gorgulhos/metabolismo , Feromônios/metabolismo , Dibutilftalato , Simulação de Acoplamento Molecular , Estirenos/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA