Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732193

RESUMO

One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.


Assuntos
Carbono , Técnicas de Reprodução Assistida , Humanos , Carbono/metabolismo , Vitamina B 12/metabolismo , Fertilização in vitro/métodos , Feminino , Homocisteína/metabolismo , Homocisteína/sangue , Ácido Fólico/metabolismo , Suplementos Nutricionais , Colina/metabolismo , Zinco/metabolismo , Betaína/metabolismo , Biomarcadores
2.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Betaína/metabolismo , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Lactococcus lactis/metabolismo , Concentração Osmolar , Osmorregulação , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula
3.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
5.
Physiol Plant ; 176(2): e14296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650503

RESUMO

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Assuntos
Betaína , Colina Desidrogenase , Tolerância ao Sal , Betaína/metabolismo , Tolerância ao Sal/genética , Colina Desidrogenase/metabolismo , Colina Desidrogenase/genética , Colina/metabolismo , Clorofíceas/genética , Clorofíceas/fisiologia , Clorofíceas/enzimologia , Clorofíceas/metabolismo , Microalgas/genética , Microalgas/enzimologia , Microalgas/metabolismo , Simulação de Acoplamento Molecular , Cloreto de Sódio/farmacologia
6.
BMC Plant Biol ; 24(1): 165, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431542

RESUMO

BACKGROUND: Glycyrrhiza uralensis Fisch., a valuable medicinal plant, shows contrasting salt tolerance between seedlings and perennial individuals, and salt tolerance at seedling stage is very weak. Understanding this difference is crucial for optimizing cultivation practices and maximizing the plant's economic potential. Salt stress resistance at the seedling stage is the key to the cultivation of the plant using salinized land. This study investigated the physiological mechanism of the application of glycine betaine (0, 10, 20, 40, 80 mM) to seedling stages of G. uralensis under salt stress (160 mM NaCl). RESULTS: G. uralensis seedlings' growth was severely inhibited under NaCl stress conditions, but the addition of GB effectively mitigated its effects, with 20 mM GB had showing most significant alleviating effect. The application of 20 mM GB under NaCl stress conditions significantly increased total root length (80.38%), total root surface area (93.28%), and total root volume (175.61%), and significantly increased the GB content in its roots, stems, and leaves by 36.88%, 107.05%, and 21.63%, respectively. The activity of betaine aldehyde dehydrogenase 2 (BADH2) was increased by 74.10%, 249.38%, and 150.60%, respectively. The 20 mM GB-addition treatment significantly increased content of osmoregulatory substances (the contents of soluble protein, soluble sugar and proline increased by 7.05%, 70.52% and 661.06% in roots, and also increased by 30.74%, 47.11% and 26.88% in leaves, respectively.). Furthermore, it markedly enhanced the activity of antioxidant enzymes and the content of antioxidants (SOD, CAT, POD, APX and activities and ASA contents were elevated by 59.55%, 413.07%, 225.91%, 300.00% and 73.33% in the root, and increased by 877.51%, 359.89%, 199.15%, 144.35%, and 108.11% in leaves, respectively.), and obviously promoted salt secretion capacity of the leaves, which especially promoted the secretion of Na+ (1.37 times). CONCLUSIONS: In summary, the exogenous addition of GB significantly enhances the salt tolerance of G. uralensis seedlings, promoting osmoregulatory substances, antioxidant enzyme activities, excess salt discharge especially the significant promotion of the secretion of Na+Future studies should aim to elucidate the molecular mechanisms that operate when GB regulates saline stress tolerance.


Assuntos
Antioxidantes , Glycyrrhiza uralensis , Humanos , Antioxidantes/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Plântula/metabolismo
7.
J Cancer Res Clin Oncol ; 150(3): 142, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503944

RESUMO

PURPOSE: Trimethylamine N-oxide (TMAO), a gut microbiome-derived metabolite, and its precursors (carnitine, choline, betaine) have not been fully examined in relation to thyroid cancer (TC) risk. The aim of this study was to assess the value of TMAO and its precursors in diagnosis of benign and malignant thyroid nodules. METHODS: In this study, high-performance liquid chromatography-tandem mass spectrometry was utilized to measure the levels of plasma TMAO and its precursors (choline, carnitine, and betaine) in 215 TC patients, 63 benign thyroid nodules (BTN) patients and 148 healthy controls (HC). The distribution of levels of TMAO and its precursors among the three groups were compared by the Kruskal-Wallis test. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the sensitivity, specificity, and the predictive accuracy of single and combined biomarkers. RESULTS: In comparison to HC, TC showed higher levels of TMAO and lower levels of its precursors (carnitine, choline, and betaine) (all P < 0.001). Plasma choline (P < 0.01) and betaine (P < 0.05) were declined in BTN than HC. The levels of carnitine (P < 0.001) and choline (P < 0.05) were significantly higher in BTN than that in TC group. Plasma TMAO showed lower levels in TC with lymph node metastasis (101.5 (73.1-144.5) ng/ml) than those without lymph node metastasis (131 (84.8-201) ng/ml, P < 0.05). Combinations of these four metabolites achieved good performance in the differential diagnosis, with the area under the ROC curve of 0.703, 0.741, 0.793 when discriminating between TC and BTN, BTN and HC, TC and HC, respectively. CONCLUSION: Plasma TMAO, along with its precursors could serve as new biomarkers for the diagnosis of benign and malignant thyroid nodules.


Assuntos
Betaína , Metilaminas , Nódulo da Glândula Tireoide , Humanos , Betaína/metabolismo , Colina/metabolismo , Carnitina/metabolismo , Nódulo da Glândula Tireoide/diagnóstico , Metástase Linfática , Biomarcadores
8.
Cell Biochem Funct ; 42(2): e3973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488483

RESUMO

The structural and functional disorders of the testis and ovary are one of the main complications of hyperglycemia. Betaine is a trimethyl glycine with antioxidant, antidiabetic, and anti-inflammatory potential. The aim of this study is to investigate the potential of betaine on the expression of aging and oxidative stress markers in ovarian and testicular cells under hyperglycemic conditions. Testicular and ovarian cells were subjected to four different conditions, including normal glucose and hyperglycemia, with or without betaine (5 mM). The cells with hyperglycemia saw an increase in malondialdehyde (MDA), methylglyoxal (MGO), expression of a receptor for AGE, and aging-related genes (ß-GAL), and a decrease in the activity of antioxidant enzymes including catalase, glutathione peroxidase, and superoxide dismutase. The treatment with betaine, in contrast, decreased the amount of MGO and MDA, and also downregulated aging-related signaling. Although hyperglycemia induces senescence in testicular and ovarian cells, the use of betaine may have a protective effect against the cell senescence, which may be useful in the management of infertility.


Assuntos
Antioxidantes , Hiperglicemia , Masculino , Feminino , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Testículo/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Ovário/metabolismo , Óxido de Magnésio/metabolismo , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , beta-Galactosidase/metabolismo
9.
J Bacteriol ; 206(4): e0008124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501746

RESUMO

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Assuntos
Betaína , Paracoccus denitrificans , Betaína/metabolismo , Sarcosina/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Metanol , Colina/metabolismo , Glicina , Formaldeído , Formiatos , Metilaminas
10.
Sci Rep ; 14(1): 3627, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351089

RESUMO

The study aimed to assess the metabolomic profile of the synovial fluid (SF) of dogs affected by spontaneous osteoarthritis (OA) and compare any differences based on disease progression. Sixty client-owned dogs affected by spontaneous OA underwent clinical, radiographic, and cytologic evaluations to confirm the diagnosis. The affected joints were divided into four study groups based on the Kallgreen-Lawrence classification: OA1 (mild), OA2 (moderate), OA3 (severe), and OA4 (extremely severe/deforming). The osteoarthritic joint's SF was subjected to cytologic examination and 1H-NMR analysis. The metabolomic profiles of the study groups' SF samples were statistically compared using one-way ANOVA. Sixty osteoarthritic joints (45 stifles, 10 shoulders and 5 elbows) were included in the study. Fourteen, 28, and 18 joints were included in the OA1, OA2, and OA3 groups, respectively (0 joints in the OA4 group). Metabolomic analysis identified 48 metabolites, five of which were significantly different between study groups: Mannose and betaine were elevated in the OA1 group compared with the OA2 group, and the 2-hydroxyisobutyrate concentration decreased with OA progression; in contrast, isoleucine was less concentrated in mild vs. moderate OA, and lactate increased in severe OA. This study identified different 1H-NMR metabolomic profiles of canine SF in patients with progressive degrees of spontaneous OA, suggesting 1H-NMR metabolomic analysis as a potential alternative method for monitoring OA progression. In addition, the results suggest the therapeutic potentials of the metabolomic pathways that involve mannose, betaine, 2-hydroxyisobutyrate, isoleucine, and lactate.


Assuntos
Hidroxibutiratos , Osteoartrite , Líquido Sinovial , Humanos , Cães , Animais , Líquido Sinovial/metabolismo , Betaína/metabolismo , Manose/metabolismo , Isoleucina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Osteoartrite/diagnóstico , Osteoartrite/veterinária , Osteoartrite/metabolismo , Lactatos/metabolismo
11.
J Nutr ; 154(4): 1309-1320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417550

RESUMO

BACKGROUND: Obesity caused by the overconsumption of energy-dense foods high in fat and sugar has contributed to the growing prevalence of type 2 diabetes. Betaine, found in food or supplements, has been found to lower blood glucose concentrations, but its exact mechanism of action is not well understood. OBJECTIVES: A comprehensive evaluation of the potential mechanisms by which betaine supplementation improves glucose metabolism. METHODS: Hyperglycemic mice were fed betaine to measure the indexes of glucose metabolism in the liver and muscle. To explore the mechanism behind the regulation of betaine on glucose metabolism, Ribonucleic Acid-Seq was used to analyze the livers of the mice. In vitro, HepG2 and C2C12 cells were treated with betaine to more comprehensively evaluate the effect of betaine on glucose metabolism. RESULTS: Betaine was added to the drinking water of high-fat diet-induced mice, and it was found to reduce blood glucose concentrations and liver triglyceride concentrations without affecting body weight, confirming its hypoglycemic effect. To investigate the specific mechanism underlying its hypoglycemic effect, protein-protein interaction enrichment analysis of the liver revealed key nodes associated with glucose metabolism, including cytochrome P450 family activity, insulin sensitivity, glucose homeostasis, and triglyceride concentrations. The Kyoto Encyclopedia of Genes and Genomes and gene ontogeny enrichment analyses showed significant enrichment of the Notch signaling pathway. These results provided bioinformatic evidence for specific pathways through which betaine regulates glucose metabolism. Key enzyme activities involved in glucose uptake, glycogen synthesis, and glycogenolysis pathways of the liver and muscle were measured, and improvements were observed in these pathways. CONCLUSIONS: This study provides new insight into the mechanisms by which betaine improves glucose metabolism in the liver and muscle and supports its potential as a drug for the treatment of metabolic disorders related to glucose.


Assuntos
Betaína , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Betaína/metabolismo , Camundongos Obesos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Triglicerídeos , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Metabolismo dos Lipídeos
12.
J Bacteriol ; 206(3): e0038223, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411048

RESUMO

Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.


Assuntos
Betaína , Pseudomonas aeruginosa , Betaína/metabolismo , Pseudomonas aeruginosa/metabolismo , Esfingosina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Ceramidases/metabolismo
13.
PLoS One ; 19(1): e0294926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166023

RESUMO

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Assuntos
Betaína , Hipertensão , Ratos , Animais , Betaína/farmacologia , Betaína/metabolismo , Ratos Endogâmicos WKY , Diuréticos/farmacologia , Eliminação Renal , Hipertensão/genética , Rim/metabolismo , Ratos Endogâmicos SHR , Pressão Sanguínea , Eletrólitos/metabolismo
14.
Hypertens Res ; 47(3): 778-789, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177285

RESUMO

The relationship between gut microbiota products trimethylamine oxide (TMAO) and related metabolites including betaine, choline and L-carnitine and hypertensive disorders of pregnancy (HDP) is unclear. In order to examine whether plasma TMAO and related metabolites predict the risk of HDP, a nested case-control study was conducted in Chinese women based on a prospective cohort including 9447 participants. 387 pairs of pregnant women (n = 774) were matched and their plasma TMAO, betaine, choline, and L-carnitine at 16-20 gestational weeks were measured by liquid chromatography-mass spectrometry. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated using the conditional logistic regression, to examine the association between TMAO metabolites and HDP. The findings showed that higher plasma betaine (≥24.94 µmol/L) was associated with a decreased risk of HDP and its subtype gestational hypertension (GH), with adjusted ORs of 0.404 (95% CI: 0.226-0.721) and 0.293 (95% CI: 0.134-0.642), respectively. Higher betaine/choline ratio (>2.64) was associated with a lower risk of HDP and its subtype preeclampsia or chronic hypertension with superimposed preeclampsia (PE/CH-PE), with adjusted ORs of 0.554 (95% CI: 0.354-0.866) and 0.226 (95% CI: 0.080-0.634). Moreover, compared with traditional factors (TFs) model, the TMAO metabolites+ TFs model had a higher predictive ability for PE/CH-PE (all indexes P values < 0.0001). Therefore, it suggests that the detection of plasma betaine and choline in the early second trimester of pregnancy can better assess the risk of HDP.


Assuntos
Hipertensão Induzida pela Gravidez , Metilaminas , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Betaína/metabolismo , Estudos Prospectivos , Segundo Trimestre da Gravidez , Estudos de Casos e Controles , Colina/metabolismo , Carnitina/metabolismo
15.
Mar Pollut Bull ; 198: 115852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043203

RESUMO

Liaohe coastal wetland has experienced severe degradation of Suaeda salsa (L.) Pall (S. salsa) in recent years. However, the impact of exogenous betaine (GB) on S. salsa growth remains unclear. Therefore, we conducted a natural simulated cultivation in soils of coastal wetland to investigate the effects of GB on S. salsa growth. The results showed that GB increased the height and weight of S. salsa, and meanwhile stimulated the synthesis of endogenous betaine and amino acids, increased soluble sugars and elevated the activity of Na+, K+-ATPase (enhancing osmotic stability). In addition, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased, and malondialdehyde (MDA) and H2O2 decreased correspondingly, thereby improving the antioxidant capacity. Overall, GB application significantly alleviated salt stress and effectively promoted S. salsa growth. This study first indicated the important role of GB in influencing S. salsa growth, offering potential strategies for remediation in coastal wetlands.


Assuntos
Chenopodiaceae , Áreas Alagadas , Betaína/metabolismo , Betaína/farmacologia , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , China
16.
J Proteomics ; 290: 105033, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879564

RESUMO

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Assuntos
Betaína , Lycium , Animais , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteômica , Carboidratos , Ácidos Carboxílicos/metabolismo
17.
Braz J Biol ; 83: e276264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937632

RESUMO

The water deficit in particular, reduces the productivity of vegetable crops. To minimize these harmful effects on agriculture, several agronomic and physiological practices are being studied, such as the use of bacteria and water stress attenuators, such as brassinosteroids. Considering the socioeconomic relevance of corn culture and its sensitivity when exposed to water deficit, the objective of the present study was to evaluate the action of brassinosteroids and azospirillum on nitrogen metabolism in corn plants subjected to water stress conditions. The experiment was carried out in a greenhouse, in a period of 47 days, with corn plants, using the hybrid K9606 VIP3. The design was completely randomized, in a 2x2x3 factorial scheme, with six replications. The first factor corresponds to two water regimes (presence and absence of water deficit). The second corresponds to inoculation via seed of Azospirillum brasiliense and absence of inoculation. And the third corresponds to the application of three concentrations of brassinosteroids (0, 0.3 and 0.6 µM). Were determined Nitrate; nitrate reductase; free ammonium; total soluble aminoacids; soluble proteins; proline; glycine betaine and glutamine synthetase. The lack of water in plants provided a reduction in the protein and nitrate reductase contents, in leaves and roots. For ammonium, plants with water deficit inoculated at a concentration of 0.3 µM, obtained an increase of 7.16 (70.26%) and 13.89 (77.04%) mmol NH4 + .Kg-1. DM (Dry mass) on the leaf and root respectively. The water deficit in the soil provided significant increases in the concentrations of glycine betaine, nitrate, proline and aminoacids, both in the leaves and in the roots of the corn plants. On the other hand, the contents of glutamine synthetase had a reduction in both leaves and roots.


Assuntos
Compostos de Amônio , Azospirillum brasilense , Zea mays , Brassinosteroides/metabolismo , Nitratos , Raízes de Plantas/metabolismo , Secas , Desidratação/metabolismo , Betaína/metabolismo , Glutamato-Amônia Ligase , Aminoácidos/metabolismo , Prolina/metabolismo , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo
18.
Zhonghua Fu Chan Ke Za Zhi ; 58(10): 774-782, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37849258

RESUMO

Objective: To characterize the relationship between the levels of plasma methyl donor and related metabolites (including choline, betaine, methionine, dimethylglycine and homocysteine) and fetal growth in twin pregnancies. Methods: A hospital-based cohort study was used to collect clinical data of 92 pregnant women with twin pregnancies and their fetuses who were admitted to Peking University Third Hospital from March 2017 to January 2018. Fasting blood was collected from the pregnant women with twin pregnancies (median gestational age: 18.9 weeks). The levels of methyl donors and related metabolites in plasma were quantitatively analyzed by high-performance liquid chromatography combined with mass spectrometry. The generalized estimation equation was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and neonatal outcomes of twins, and the generalized additive mixed model was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and fetal growth ultrasound indicators. Results: (1) General clinical data: of the 92 women with twin pregnancies, 66 cases (72%) were dichorionic diamniotic (DCDA) twin pregnancies, and 26 cases (28%) were monochorionic diamniotic (MCDA) twin pregnancies. The comparison of the levels of five plasma methyl donors and related metabolites in twin pregnancies with different basic characteristics showed that the median levels of plasma choline and betaine in pregnant women ≥35 years old were higher than those in pregnant women <35 years old, and the differences were statistically significant (all P<0.05). (2) Correlation between plasma methyl donor and related metabolites levels and neonatal growth indicators: after adjusting for confounding factors, plasma homocysteine level in pregnant women with twins was significantly negatively correlated with neonatal birth weight (ß=-47.9, 95%CI:-94.3- -1.6; P=0.043). Elevated methionine level was significantly associated with decreased risks of small for gestational age infants (SGA; OR=0.5, 95%CI: 0.3-0.9; P=0.021) and low birth weight infants (OR=0.6, 95%CI: 0.4-0.9; P=0.020). Increased homocysteine level was associated with increased risks of SGA (OR=1.5, 95%CI: 1.0-2.2; P=0.029) and inconsistent growth in twin fetuses (OR=1.9, 95%CI: 1.0-3.7; P=0.049). (3) Correlation between the levels of plasma methyl donors and related metabolites and intrauterine growth indicators of twins pregnancies: for every 1 standard deviation increase in plasma choline level in pregnant women with twin pregnancies, fetal head circumference, abdominal circumference, femoral length and estimated fetal weight in the second trimester increased by 1.9 mm, 2.6 mm, 0.5 mm and 20.1 g, respectively, and biparietal diameter, abdominal circumference and estimated fetal weight increased by 0.7 mm, 3.0 mm and 38.4 g in the third trimester, respectively, and the differences were statistically significant (all P<0.05). (4) Relationship between plasma methyl donor and related metabolites levels in pregnant women with different chorionicity and neonatal birth weight and length: the negative correlation between plasma homocysteine level and neonatal birth weight was mainly found in DCDA twin pregnancy (ß=-65.9, 95%CI:-110.6- -21.1; P=0.004). The levels of choline, betaine and dimethylglycine in plasma of MCDA twin pregnancy were significantly correlated with the birth weight and length of newborns (all P<0.05). Conclusion: Homocysteine level is associated with low birth weight in twins, methionine is associated with decreased risk of SGA, and choline is associated with fetal growth in the second and third trimesters of pregnancy.


Assuntos
Peso ao Nascer , Desenvolvimento Fetal , Gravidez de Gêmeos , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez/sangue , Gravidez/metabolismo , Betaína/sangue , Betaína/metabolismo , Peso ao Nascer/fisiologia , Colina/sangue , Colina/metabolismo , Estudos de Coortes , Desenvolvimento Fetal/fisiologia , Peso Fetal/fisiologia , Homocisteína/sangue , Homocisteína/metabolismo , Metionina/sangue , Metionina/metabolismo , Gravidez de Gêmeos/sangue , Gravidez de Gêmeos/fisiologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Trimestres da Gravidez/sangue , Trimestres da Gravidez/fisiologia , Resultado da Gravidez
19.
Phytother Res ; 37(10): 4755-4770, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37846157

RESUMO

Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.


Assuntos
Betaína , Disfunção Cognitiva , Camundongos , Masculino , Animais , Humanos , Betaína/efeitos adversos , Betaína/metabolismo , Microglia , Sistema Hipotálamo-Hipofisário , Pandemias , Solução Salina/efeitos adversos , Solução Salina/metabolismo , Sistema Hipófise-Suprarrenal , Hipocampo , Isolamento Social/psicologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente
20.
Mol Nutr Food Res ; 67(24): e2300376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815169

RESUMO

SCOPE: Ulcerative colitis (UC) is an intestinal disease that is becoming increasingly prevalent and is often overlooked in early stages, and its pathogenesis is often closely related to inflammatory processes. Betaine is a natural product with anti-inflammatory effects that exists in a wide range of plants and animals. METHODS AND RESULTS: In this study, the protective effects of betaine are investigated on intestinal barrier function in a mouse model, a dextran sulfate sodium-induced ulcerative colitis and its mechanism of action in the inflammatory context. FITC-dextran 4000 Da (FD-4) flux, disease activity index, histopathological scores, and inflammatory factor levels in sera are determined across different groups. In addition, Caco-2 cell monolayer barrier function is evaluated by transepithelial resistance and FD-4 flux. The expression levels and distribution of tight junction proteins are determined using Western blot and immunofluorescence, respectively. Activation of the NF-κBp65/MLCK/p-MLC signaling pathway is detected by Western blot. Chromatin immunoprecipitation is performed to examine the binding of NF-κB to the MLCK gene promoter. The results indicated that betaine inhibits NF-κB-mediated activation of the MLCK/p-MLC signaling pathway to protect the intestinal barrier function of mice with UC. CONCLUSION: Betaine can be used as a potential candidate drug to improve intestinal barrier dysfunction in patients with UC.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Colite Ulcerativa/induzido quimicamente , Células CACO-2 , Sulfato de Dextrana/toxicidade , Betaína/farmacologia , Betaína/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA