Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Plant Mol Biol ; 114(3): 67, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836995

RESUMO

Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.


Assuntos
Beta vulgaris , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Beta vulgaris/genética , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fotoperíodo , Vernalização
2.
Braz J Biol ; 84: e276278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896726

RESUMO

Excessive salts in irrigation water and water stress have a negative impact on the productive yield of agricultural crops. In this regard, the objective was to evaluate the effect of combined saline and water stress on the agronomic performance of the beet crop. The experiment was conducted in a greenhouse located at the Universidade da Integração Internacional da Lusofonia Afro-Brasileira, in Redenção, Ceará. The experimental design used was completely randomized with split-plots arrangement. The main plots were formed by the electrical conductivities of the irrigation water (0.8, 1.5, 3.0, 4.5, and 6.0 dS m-1), while the irrigation depths of 50 and 100% of the crop evapotranspiration (ETc) were the subplots, with 6 replications. Saline stress negatively affected growth, biomass, tuber root length, and productivity, while increasing the soluble solids of the beet crop. Excessive salts in the irrigation water caused reductions in physiological indices of the beet crop, although with less severity under the 100% ETc.


Assuntos
Irrigação Agrícola , Beta vulgaris , Biomassa , Beta vulgaris/fisiologia , Produtos Agrícolas , Água , Estresse Salino/fisiologia , Desidratação
3.
Plant Physiol Biochem ; 210: 108651, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653098

RESUMO

Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.


Assuntos
Beta vulgaris , Fotossíntese , Espécies Reativas de Oxigênio , Beta vulgaris/fisiologia , Beta vulgaris/metabolismo , Beta vulgaris/genética , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Água/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361565

RESUMO

Ascorbate oxidase, which is known to play a key role in regulating the redox state in the apoplast, cell wall metabolism, cell expansion and abiotic stress response in plants, oxidizes apo-plastic ascorbic acid (AA) to dehydroascorbic acid (DHA). However, there is little information about the AAO genes and their functions in beets under abiotic stress. The term salt or drought stress refers to the treatment of plants with slow and gradual salinity/drought. Contrastingly, salt shock consists of exposing plants to high salt levels instantaneously and drought shock occurs under fast drought progression. In the present work, we have subjected plants to salinity or drought treatments to elicit either stress or shock and carried out a genome-wide analysis of ascorbate oxidase (AAO) genes in sugar beet (B. vulgaris cv. Huzar) and its halophytic ancestor (B. maritima). Here, conserved domain analyses showed the existence of twelve BvAAO gene family members in the genome of sugar beet. The BvAAO_1-12 genes are located on chromosomes 4, 5, 6, 8 and 9. The phylogenetic tree exhibited the close relationships between BvAAO_1-12 and AAO genes of Spinacia oleracea and Chenopodium quinoa. In both beet genotypes, downregulation of AAO gene expression with the duration of salt stress or drought treatment was observed. This correlated with a decrease in AAO enzyme activity under defined experimental setup. Under salinity, the key downregulated gene was BvAAO_10 in Beta maritima and under drought the BvAAO_3 gene in both beets. This phenomenon may be involved in determining the high tolerance of beet to salinity and drought.


Assuntos
Beta vulgaris , Beta vulgaris/fisiologia , Secas , Salinidade , Ascorbato Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Estresse Fisiológico/genética , Açúcares/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076993

RESUMO

Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.


Assuntos
Beta vulgaris , Beta vulgaris/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Transcriptoma
6.
PLoS One ; 16(5): e0251675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043649

RESUMO

Here we determined the impact of salt shock and salt stress on the level of DNA methylation in selected CpG islands localized in promoters or first exons of sixteen salt-responsive genes in beets. Two subspecies differing in salt tolerance were subjected for analysis, a moderately salt-tolerant sugar beet Beta vulgaris ssp. vulgaris cv. Huzar and a halophytic beet, Beta vulgaris ssp. maritima. The CpG island methylation status was determined. All target sequences were hyper- or hypomethylated under salt shock and/or salt stress in one or both beet subspecies. It was revealed that the genomic regions analyzed were highly methylated in both, the salt treated plants and untreated controls. Methylation of the target sequences changed in a salt-dependent manner, being affected by either one or both treatments. Under both shock and stress, the hypomethylation was a predominant response in sugar beet. In Beta vulgaris ssp. maritima, the hypermethylation occurred with higher frequency than hypomethylation, especially under salt stress and in the promoter-located CpG sites. Conversely, the hypomethylation of the promoter-located CpG sites predominated in sugar beet plants subjected to salt stress. This findings suggest that DNA methylation may be involved in salt-tolerance and transcriptomic response to salinity in beets.


Assuntos
Beta vulgaris/fisiologia , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Ilhas de CpG/genética , Epigênese Genética , Genes de Plantas , Genômica , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Salinidade , Sais/metabolismo
7.
Plant Sci ; 306: 110873, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775369

RESUMO

Soil salinity reduces root hydraulic conductivity (Lpr) of several plant species. However, how cellular signaling and root hydraulic properties are linked in plants that can cope with water restriction remains unclear. In this work, we exposed the halotolerant species red beet (Beta vulgaris) to increasing concentrations of NaCl to determine the components that might be critical to sustaining the capacity to adjust root hydraulics. Our strategy was to use both hydraulic and cellular approaches in hydroponically grown seedlings during the first osmotic phase of salt stress. Interestingly, Lpr presented a bimodal profile response apart from the magnitude of the imposed salt stress. As well as Lpr, the PIP2-aquaporin profile follows an unphosphorylated/phosphorylated pattern when increasing NaCl concentration while PIP1 aquaporins remain constant. Lpr also shows high sensitivity to cycloheximide. In low NaCl concentrations, Lpr was high and 70 % of its capacity could be attributed to the CHX-inhibited cell-to-cell pathway. More interestingly, roots can maintain a constant spontaneous exudated flow that is independent of the applied NaCl concentration. In conclusion, Beta vulgaris root hydraulic adjustment completely lies in a dominant cell-to-cell pathway that contributes to satisfying plant water demands.


Assuntos
Aquaporinas/fisiologia , Beta vulgaris/fisiologia , Transporte Biológico/fisiologia , Fosforilação/fisiologia , Raízes de Plantas/fisiologia , Salinidade , Plântula/fisiologia , Estresse Fisiológico/fisiologia , Produtos Agrícolas/fisiologia
8.
Theor Appl Genet ; 134(1): 81-93, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990769

RESUMO

Meiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics. In the present study, the effect of heat stress on recombination in sugar beet was studied by treating F1 plants at 28 °C/25 °C (day/night) and genotyping the progeny. F1 plants were reciprocally backcrossed allowing the study of male and female meiosis separately. Genotypic data indicated an overall increase in crossover frequency of approximately one extra crossover per meiosis, with an associated increase in pericentromeric recombination under heat treatment. Our data indicate that the changes were mainly induced by alterations in female meiosis only, showing that heterochiasmy in sugar beet is reduced under heat stress. Overall, despite the associated decrease in fertility, these data support the potential use of heat stress to foster recombination in sugar beet breeding programmes.


Assuntos
Beta vulgaris/genética , Troca Genética , Temperatura Alta , Estresse Fisiológico , Beta vulgaris/fisiologia , Genótipo , Meiose , Melhoramento Vegetal
9.
Plant Cell ; 32(10): 3206-3223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32769131

RESUMO

During their first year of growth, overwintering biennial plants transport Suc through the phloem from photosynthetic source tissues to storage tissues. In their second year, they mobilize carbon from these storage tissues to fuel new growth and reproduction. However, both the mechanisms driving this shift and the link to reproductive growth remain unclear. During vegetative growth, biennial sugar beet (Beta vulgaris) maintains a steep Suc concentration gradient between the shoot (source) and the taproot (sink). To shift from vegetative to generative growth, they require a chilling phase known as vernalization. We studied sugar beet sink-source dynamics upon vernalization and showed that before flowering, the taproot underwent a reversal from a sink to a source of carbohydrates. This transition was induced by transcriptomic and functional reprogramming of sugar beet tissue, resulting in a reversal of flux direction in the phloem. In this transition, the vacuolar Suc importers and exporters TONOPLAST SUGAR TRANSPORTER2;1 and SUCROSE TRANSPORTER4 were oppositely regulated, leading to the mobilization of sugars from taproot storage vacuoles. Concomitant changes in the expression of floral regulator genes suggest that these processes are a prerequisite for bolting. Our data will help both to dissect the metabolic and developmental triggers for bolting and to identify potential targets for genome editing and breeding.


Assuntos
Beta vulgaris/fisiologia , Floema/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Temperatura Baixa , Esculina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Floema/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Sacarose/metabolismo , Açúcares/metabolismo , Vacúolos/genética , Vacúolos/metabolismo
10.
Plant Physiol Biochem ; 154: 699-713, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32750647

RESUMO

Allantoin as a nitrogen metabolite can improve the salt tolerance in plants, but its mechanism of action remain elusive. Herein, the effects of pretreatment with exogenous allantoin in salt tolerance were investigated in sugar beet. The seedlings were subjected to salt stress (300 mM Na+) without or with different allantoin concentrations (0.01, 0.1, and 1 mM). The effects of allantoin on plant growth, homeostasis, oxidative damage, osmoregulation, and polyamine metabolism were studied. The results showed that salt stress inhibited the net photosynthetic rate and plant growth, and caused oxidative damage. However, these adverse effects were mitigated by exogenous allantoin in a dose-dependent manner, especially at 0.1 mM. Allantoin reduced the accumulation of ROS by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and AsA content. Under salt stress, allantoin reduced the root concentrations of free putrescine (Put) but increased the free spermine (Spm) in leaves and roots. Furthermore, allantoin decreased the Na+/K+ ratio and promoted the accumulation of betaine and soluble sugars in leaves and roots. Under salinity conditions, allantoin may enhance the antioxidant system and improve ion homeostasis by enhancing putrescine and/or spermine accumulation. In addition, Pearson's correlation and principal component analysis (PCA) established correlations between physiological parameters, and significant differences between different concentrations of allantoin were observed. In total, exogenous allantoin effectively reduced the oxidative damage and ion toxicity in sugar beet, caused by salinity, this finding would be helpful in improving salt tolerance in plant.


Assuntos
Alantoína/farmacologia , Antioxidantes/metabolismo , Beta vulgaris/fisiologia , Putrescina/metabolismo , Tolerância ao Sal , Beta vulgaris/efeitos dos fármacos , Plântula , Açúcares
11.
BMC Plant Biol ; 20(1): 347, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698773

RESUMO

BACKGROUND: Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS: Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS: During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.


Assuntos
Beta vulgaris/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Raízes de Plantas/metabolismo , Estresse Salino/fisiologia , Adaptação Fisiológica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Salinidade
12.
Pol J Microbiol ; 69: 1-4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468805

RESUMO

Microalgae application in agriculture is an alternative measure that could be highly beneficial to plants. The application of microalgae Chlorella vulgaris S45 and its effect on plant growth and pigment content in Swiss chard were investigated. In the treatments, 5% and 10% algal suspensions were applied by spraying on plants and in soil, respectively. C. vulgaris S45 affected the initial growth of Swiss chard and the content of photosynthetic pigments positively. The correlation analysis proved the existence of statistically significant interdependency between chlorophyll a (Chl a) content and leaf number (r = 0.876 at p < 0.05), and chlorophyll b (Chl b) content and fresh leaf weight (r = 0.783 at p < 0.05).Microalgae application in agriculture is an alternative measure that could be highly beneficial to plants. The application of microalgae Chlorella vulgaris S45 and its effect on plant growth and pigment content in Swiss chard were investigated. In the treatments, 5% and 10% algal suspensions were applied by spraying on plants and in soil, respectively. C. vulgaris S45 affected the initial growth of Swiss chard and the content of photosynthetic pigments positively. The correlation analysis proved the existence of statistically significant interdependency between chlorophyll a (Chl a) content and leaf number (r = 0.876 at p < 0.05), and chlorophyll b (Chl b) content and fresh leaf weight (r = 0.783 at p < 0.05).


Assuntos
Agricultura/métodos , Beta vulgaris/fisiologia , Chlorella vulgaris/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Simbiose
13.
PLoS One ; 15(5): e0232875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407357

RESUMO

Water uptake into seeds is a fundamental prerequisite of germination and commonly influenced by commercial seed enhancement technologies. The effect of fruit orientation and contrasting pelleting materials on germination and biological performance of sugar beet was assessed. The results indicated there was orientation dependent fruit shrinkage of 37% for the operculum side supplied by moisture compared to 4% for the basal pore side. The expansion rate of 5% compared to the original size, which was also observed for non-shrinking seeds, indicated this was a temporary effect. This behaviour has importance for the application pelleting materials to seeds. Pellets composed of materials exhibiting low levels of swelling act as a water distribution layer which increased germination rates. Careful selection of pelleting material is crucial as it has direct implications on germination speed and subsequent establishment rates.


Assuntos
Agricultura/métodos , Beta vulgaris/fisiologia , Frutas/química , Germinação , Sementes/fisiologia , Açúcares/metabolismo , Água/metabolismo , Beta vulgaris/química , Beta vulgaris/crescimento & desenvolvimento , Frutas/fisiologia , Orientação Espacial , Sementes/química , Sementes/crescimento & desenvolvimento
14.
Planta ; 251(6): 107, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32440739

RESUMO

MAIN CONCLUSION: The vacuolar membrane is an essential component in protecting the plant cell from stress factors. Different variations in the tonoplast lipid content, which depend on the type of stress, have been reviewed. The lipid content of vacuolar membranes of beet roots (Beta vulgaris L.) under hypoosmotic, hyperosmotic and oxidative types of stress has been studied. These types of stress induce variations in the content of almost all the classes of studied lipids (phospholipids, glycoglycerolipids, sterols and fatty acids). The variations, which are characteristic of a single stress, include the variations (i) in the content of individual glycoglycerolipids and in their total content, (ii) in the total content of sterols, and (iii) in the ratio of content of phosphatidylcholine/phosphatidylethanolamine in the scope of tonoplast phospholipids. Variations observed under all of the types of stress under scrutiny include (i) variations in the content of fatty acids of tonoplast lipids, (ii) some decrease in the content of phosphatidic acid and phosphatidylethanolamine, and (iii) variations in the content of individual sterols. Stigmasterol, campesterol, as well as the stigmasterol/sitosterol ratio increased in varying degrees under all of the types of stress. The most substantial variations have been observed in the content of sterols under abiotic stress. This is probably due to role of sterols in regulation of such membrane characteristics as permeability and microviscosity. In our opinion, sterols may represent one of the main components of tonoplast adaptive mechanisms.


Assuntos
Beta vulgaris/química , Esteróis/metabolismo , Vacúolos/química , Beta vulgaris/fisiologia , Membrana Celular/química , Membrana Celular/fisiologia , Permeabilidade da Membrana Celular , Glicolipídeos/metabolismo , Estresse Fisiológico , Vacúolos/fisiologia
15.
BMC Plant Biol ; 20(1): 227, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434543

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play crucial roles in regulating numerous biological processes in which complicated mechanisms are involved. Nonetheless, little is known about the number, features, sequences, and possible effects of lncRNAs on plant responses to alkaline stress. RESULTS: Leaf samples collected based on the control Beta vulgaris L., as well as those under short-term and long-term alkaline treatments, were subjected to high-throughput RNA sequencing, through which a total of 8535 lncRNAs with reliable expression were detected. Of these lncRNAs, 102 and 49 lncRNA expression profiles were altered after short- and long-term alkaline stress, respectively. Moreover, 7 lncRNAs were recognized as precursors to 17 previously identified miRNAs. Four lncRNAs responsive to alkaline stress were estimated as targets for 8 miRNAs. Moreover, computational analysis predicted 4318 potential target genes as lncRNAs responsive to alkaline stress. Analysis of functional annotations showed that the abovementioned possible target genes were involved in various bioprocesses, such as kinase activity, structural constituents of ribosomes, the ribonucleoprotein complex and protein metabolic processes. Association analysis provided convincing proof of the interplay of specific candidate target genes with lncRNAs. CONCLUSION: LncRNAs likely exert vital roles during the regulation of the alkaline stress response and adaptation in plants through interaction with protein-coding genes. The findings of this study contribute to comprehensively examining lncRNAs in Beta vulgaris L. and shed more light on the possible roles and modulating interplays of lncRNAs responsive to alkaline stress, thereby laying a certain basis for functional analyses of these types of Beta vulgaris L. lncRNAs in the future.


Assuntos
Beta vulgaris/fisiologia , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , Beta vulgaris/genética , Concentração de Íons de Hidrogênio , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo
16.
Adv Exp Med Biol ; 1241: 167-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32383121

RESUMO

Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.


Assuntos
Beta vulgaris/fisiologia , Estresse Fisiológico , Beta vulgaris/efeitos dos fármacos , Secas , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
17.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230932

RESUMO

Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO2 intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as "stress proteins" were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.


Assuntos
Beta vulgaris/fisiologia , Proteômica , Estresse Salino/fisiologia , Adaptação Fisiológica , Ácido Ascórbico , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Salinidade , Açúcares/metabolismo
18.
J Plant Physiol ; 243: 153055, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639537

RESUMO

Food demands of increasing human population dictate intensification of livestock production, however, environmental stresses could jeopardize producers' efforts. Forage legumes suffer from yield losses and poor nutritional status due to salinity increase of agricultural soils. As tools aimed to reduce negative impacts of biotic or abiotic stresses, proteinase inhibitors (PIs) have been promoted for biotechnological improvements. In order to increase tolerance of Lotus corniculatus L. to salt stress, serine PI, BvSTI, was introduced into this legume using Agrobacterium rhizogenes, with final transformation efficiency of 4.57%. PCR, DNA gel-blot, RT-PCR and in-gel protein activity assays confirmed the presence and activity of BvSTI products in transformed lines. Plants from three selected transgenic lines (21, 73 and 109) showed significant alterations in overall phenotypic appearance, corresponding to differences in BvSTI accumulation. Lines 73 and 109 showed up to 7.3-fold higher number of tillers and massive, up to 5.8-fold heavier roots than in nontransformed controls (NTC). Line 21 was phenotypically similar to NTC, accumulated less BvSTI transcripts and did not exhibit an additional band of recombinant trypsin inhibitor as seen in lines 73 and 109. Exposure of the transgenic lines to NaCl revealed different levels of salt stress susceptibility. The NaCl sensitivity index, based on morphological appearance and chlorophyll concentrations showed that lines 73 and 109 were significantly less affected by salinity than NTC or line 21. High level of BvSTI altered morphology and delayed salt stress related senescence, implicating BvSTI gene as a promising tool for salinity tolerance improvement trials in L. corniculatus.


Assuntos
Beta vulgaris/fisiologia , Lotus/fisiologia , Proteínas de Plantas/genética , Inibidores de Serina Proteinase/genética , Agrobacterium/genética , Beta vulgaris/crescimento & desenvolvimento , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Inibidores de Serina Proteinase/metabolismo
19.
Planta ; 250(5): 1717-1729, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414204

RESUMO

MAIN CONCLUSION: Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.


Assuntos
Ácido Abscísico/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Beta vulgaris/fisiologia , Bioquímica , Germinação , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Espectrometria de Massas em Tandem
20.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382384

RESUMO

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


Assuntos
Beta vulgaris/fisiologia , Cálcio/metabolismo , Raízes de Plantas/fisiologia , Sacarose/metabolismo , Aclimatação , Beta vulgaris/crescimento & desenvolvimento , Biomassa , Secas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA