Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731596

RESUMO

This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.


Assuntos
Beta vulgaris , Linho , Lanches , Beta vulgaris/química , Linho/química , Verduras/química , Betalaínas/química , Betalaínas/análise , Polifenóis/análise , Polifenóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Dieta Livre de Glúten , Compostos Fitoquímicos/química , Glutens/análise , Glutens/química
2.
Int J Biol Macromol ; 266(Pt 2): 131309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580019

RESUMO

Enzymatic degradation of plant biomass requires the coordinated action of various enzymes. In this study, the production of reducing sugars from pectic substrates and sugar beet pulp (SBP) was investigated and compared using commercial enzyme preparations, including M2, pectinase (E1), Viscozyme L (V-L) and L-40. V-L, a cellulolytic enzyme mix produced by Aspergillus sp. was further evaluated as the most robust enzyme cocktail with the strongest SBP degradation ability in terms of the release of monosaccharides, methanol, and acetate from SBP. Mass-spectrometry-based proteomics analysis of V-L revealed 156 individual proteins. Of these, 101 proteins were annotated as containing a carbohydrate-active enzyme module. Notably, of the 50 most abundant proteins, ca. 44 % were predicted to be involved in pectin degradation. To reveal the role of individual putative key enzymes in pectic substrate decomposition, two abundant galacturonases (PglA and PglB), were heterologously expressed in Pichia pastoris and further characterized. PglA and PglB demonstrated maximum activity at 57 °C and 68 °C, respectively, and exhibited endo-type cleavage patterns towards polygalacturonic acid. Further studies along this line may lead to a better understanding of efficient SBP degradation and may help to design improved artificial enzyme mixtures with lower complexity for future application in biotechnology.


Assuntos
Pectinas , Proteômica , Pectinas/metabolismo , Proteômica/métodos , Especificidade por Substrato , Poligalacturonase/metabolismo , Poligalacturonase/química , Beta vulgaris/química , Beta vulgaris/metabolismo , Aspergillus/enzimologia
3.
Int J Biol Macromol ; 265(Pt 2): 131063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521297

RESUMO

This study assessed the influence of drying pretreatment and extraction conditions (type of acid and particle size of plant material) on the yield and physicochemical properties of pectin from sugar beet flakes resulted as by-product of sugar beet processing in the sugar industry. The results indicated that the drying conditions (hot-air drying and lyophilization) affected the extraction yield, the chemical composition of pectin, its color, degree of methylation and acetylation, molecular weight, and its rheological and emulsifying properties. The best results for pectin yield (16.20%), galacturonic acid content (91.19 g/100 g), degree of methylation and acetylation (66.93 and 23.87%), and molecular weight (3.89 × 105 g/mol) were obtained when sugar beet flakes were pretreated by hot-air drying, and the extraction was made with citric acid using plant material with particle sizes of 125-200 µm. This pectin also had high emulsion activity (51.42%) and emulsion stability (88.03%). The FT-IR spectra were similar, while pectin thermal behavior was affected by the drying pretreatment and extraction conditions. The results of this study showed that from this by-product of the sugar industry it can be extracted high quality pectin with rheological and emulsifying properties that are superior to commercial citrus and apple pectin.


Assuntos
Beta vulgaris , Pectinas , Pectinas/química , Beta vulgaris/química , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier , Liofilização , Açúcares
4.
Food Funct ; 15(8): 4065-4078, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546454

RESUMO

The decline in vascular function and increase in blood pressure with aging contribute to an increased cardiovascular disease risk. In this randomized placebo-controlled crossover study, we evaluated whether previously reported cardiovascular benefits of plant-derived inorganic nitrate via nitric oxide (NO) translate into improved vascular function and blood pressure-lowering in 15 men and women (age range: 56-71 years) with treated hypertension. We investigated the effects of a single ∼400 mg-dose at 3 hours post-ingestion (3H POST) and the daily consumption of 2 × âˆ¼400 mg of nitrate through nitrate-rich compared with nitrate-depleted (placebo) beetroot juice over 4 weeks (4WK POST). Measurements included nitrate and nitrite in plasma and saliva; endothelial-dependent and -independent forearm blood flow (FBF) responses to acetylcholine (FBFACh) and glyceryltrinitrate (FBFGTN); and clinic-, home- and 24-hour ambulatory blood pressure. Compared to placebo, plasma and salivary nitrate and nitrite increased at 3H and 4WK POST following nitrate treatment (P < 0.01), suggesting a functioning nitrate-nitrite-NO pathway in the participants of this study. There were no differences between treatments in FBFACh and FBFGTN-area under the curve (AUC) ratios [AUC ratios after (3H POST, 4WK POST) compared with before (PRE) the intervention], or 24-hour ambulatory blood pressure or home blood pressure measures (P > 0.05). These findings do not support the hypothesis that an increased intake of dietary nitrate exerts sustained beneficial effects on FBF or blood pressure in hypertensive older adults, providing important information on the efficacy of nitrate-based interventions for healthy vascular aging. This study was registered under ClinicialTrials.gov (NCT04584372).


Assuntos
Beta vulgaris , Pressão Sanguínea , Estudos Cross-Over , Sucos de Frutas e Vegetais , Hipertensão , Nitratos , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Nitratos/metabolismo , Beta vulgaris/química , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/dietoterapia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Sucos de Frutas e Vegetais/análise , Nitritos/análise , Saliva/química , Saliva/metabolismo
5.
Int J Biol Macromol ; 253(Pt 7): 127356, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838137

RESUMO

Sugar-beet pulp (SBP) is an abundant, cellulose-rich, non-food by-product of agriculture. Oxidised SBP (oP) has valuable viscosity attributes, and different oxidation protocols yield higher- or lower-viscosity oP. We investigated how SBP polysaccharides change during oxidation, since these changes must define oP quality. Oxidation solubilised much pectin and hemicellulose; however, most cellulose stayed insoluble. Fresh SBP contains negligible 'hemicellulose a' (=alkali-extractable polysaccharides that precipitate upon acidification), but oxidation created abundant glucose-rich 'hemicellulose a' from SBP cellulose. We propose that the cellulose acquired COOH groups, conferring alkali-extractability and admitting more water, thereby augmenting viscosity. The pectin and hemicellulose molecules that were retained during oxidation had been partially depolymerised, and their median Mr correlated negatively with oP viscosity. We developed a novel procedure to explore cellulose's permeability by measuring the ingress of tritium from [3H]water into microfibrils and its retention during desiccation. In high-crystallinity Avicel, 75 % of the cellulose's OH groups were inaccessible to [3H]water, whereas filter-paper cellulose acquired the theoretical maximum 3H, indicating an open structure. Retention of 3H by oP preparations correlated positively with viscosity, indicating that increased cellulose accessibility generates a viscous oP. In conclusion, depolymerisation and solubilisation of matrix polysaccharides, accompanied by increasing water-accessibility of cellulose, enhanced SBP's viscosity.


Assuntos
Beta vulgaris , Celulose , Celulose/química , Beta vulgaris/química , Viscosidade , Polissacarídeos/química , Pectinas/química , Glucose , Água
6.
Food Funct ; 14(17): 7959-7968, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561087

RESUMO

Endothelial dysfunction is commonly associated with a cardiovascular event, such as myocardial infarction. Myocardial infarction is marked by an ischemia/reperfusion (IR) phenomenon associated with endothelial dysfunction, contributing even more to future cardiovascular events. Although the supplementation with L-citrulline and nitrate from watermelon and beetroot have been used to improve vascular function, the effect of microencapsulated watermelon rind (WR) or its co-ingestion with beetroot (WR + B) on endothelial IR injury has not been addressed. Therefore, this study aimed to investigate the effect of a single dose of WR and WR + B on IR-induced macro-and microvascular dysfunction. In a randomized, crossover, placebo-controlled study, 12 volunteers underwent macro (flow-mediated dilation) and microvascular (muscle oxygen saturation) assessment and blood collection (to measure L-citrulline, L-arginine, nitrate and nitrite) before and after 20 min of blood occlusion in WR, WR + B and placebo conditions. Prolonged ischemia induced endothelial dysfunction in the macro but not in the microvasculature. The WR and WR + B supplementation significantly restored FMD after IR injury compared to the placebo (p < 0.05). However, there was no significant difference between WR and WR + B in the macrovascular function (p > 0.05). Plasma L-citrulline, L-arginine, nitrate, and nitrite significantly increased (p > 0.05) after WR and WR + B supplementation compared to the placebo. A single dose of WR and WR + B effectively minimizes IR-induced macrovascular endothelial dysfunction in healthy individuals. Beetroot co-ingestion with watermelon did not provide an additional effect of endothelial dysfunction induced by IR (NCT04781595, March 4, 2021).


Assuntos
Beta vulgaris , Citrullus , Suplementos Nutricionais , Endotélio , Humanos , Masculino , Feminino , Adulto , Citrullus/química , Frutas/química , Beta vulgaris/química , Endotélio/efeitos dos fármacos , Endotélio/fisiologia , Traumatismo por Reperfusão/dietoterapia , Treinamento Resistido
7.
Bioprocess Biosyst Eng ; 46(10): 1427-1435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37490146

RESUMO

The underlying interplay between physicochemical property and enzymatic hydrolysis of cellulose still remains unclear. The impacts of matrix glycan composition of sugar beet pulp (SBP) on physical structure and saccharification efficiency were emphasized. The results showed that aqueous ammonia (AA) pretreatment could remove the non-cellulosic polysaccharides and destroy the linkage between the pectin and lignin. The cellulose supramolecule was changed significantly after AA pretreatment, in terms of the decline in hardness, gumminess, springiness, thickness and degree of polymerization. Furthermore, vascular cell was exposed and degraded. The highest reducing sugar yield of 355.06 mg/g was obtained from the pretreated SBP (80 °C) with enzyme loading of 30 U/g, which was 1.01 times higher than that of the untreated SBP. This research also supported the idea that recognizing and precisely removing the primary epitopes in cell walls might be an ideal strategy to accomplish the improved enzymatic hydrolysis through mild pretreatment.


Assuntos
Beta vulgaris , Beta vulgaris/química , Amônia/química , Hidrólise , Açúcares , Celulose/química , Pectinas , Parede Celular , Lignina
8.
J Sci Food Agric ; 103(15): 7888-7895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483122

RESUMO

BACKGROUND: About 35-45% of the global population is affected by iodine deficiency. Iodine intake can be increased through the consumption of biofortified vegetables. Given the increasing interest in wild edible species of new leafy vegetables due to their high nutritional content, this study aimed to evaluate the suitability of Swiss chard (Beta vulgaris ssp. vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima) to be fortified with iodine. Plants were cultivated hydroponically in a nutrient solution enriched with four different concentrations of iodine (0, 0.5, 1.0, and 1.5 mg L-1 ), and the production and quality of baby leaves were determined. RESULTS: Sea beet accumulated more iodine than Swiss chard. In both subspecies, increasing the iodine concentration in the nutrient solution improved leaf quality as a result of greater antioxidant capacity - the ferric reducing ability of plasma (FRAP) index increased by 17% and 28%, at 0.5 and 1.5 mg L-1 iodine, respectively - the content of flavonoids (+31 and + 26%, at 1 and 1.5 mg L-1 of iodine, respectively), and the lower content of nitrate (-38% at 1.5 mg L-1 of iodine) and oxalate (-36% at 0.5 mg L-1 of iodine). In sea beet, however, iodine levels in the nutrient solution higher than 0.5 mg L-1 reduced crop yield significantly. CONCLUSIONS: Both subspecies were found to be suitable for producing iodine-enriched baby leaves. The optimal iodine levels in the nutrient solution were 1.0 in Swiss chard and 0.5 mg L-1 in sea beet, as crop yield was not affected at these concentrations and leaves contained enough iodine to satisfy an adequate daily intake with a serving of 100 g. © 2023 Society of Chemical Industry.


Assuntos
Beta vulgaris , Iodo , Beta vulgaris/química , Antioxidantes/análise , Iodo/análise , Biofortificação , Verduras/química , Folhas de Planta/química
9.
Talanta ; 265: 124768, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331041

RESUMO

The European Union Publications Office has recently presented a report on the European Union's coordinated action with the Joint Research Centre to determine certain fraudulent practices in the honey sector, in which it has been indicated that 74% of the samples analyzed, imported from China, and 93% of the samples analyzed, imported from Turkey, the two largest honey producers worldwide, presented at least one indicator of exogenous sugar or suspicion of being adulterated. This situation has revealed the critical state of the problem of honey adulteration worldwide and the need to develop analytical techniques for its detection. Even though the adulteration of honey is carried out in a general way with sweetened syrups derived from C4 plants, recent studies have indicated the emerging use of syrups derived from C3 plants for the adulteration of honey. This kind of adulteration makes it impossible to analyze its detection using official analysis techniques. In this work, we have developed a fast, simple, and economical method based on the Fourier transform infrared spectroscopy technique, with attenuated total reflectance, for the qualitative, quantitative, and simultaneous determination of beetroot, date, and carob syrups, derived from of C3 plants; whose available bibliography is very scarce and analytically not very conclusive for its use by the authorities. The proposed method has been based on the establishment of the spectral differences between honey and the mentioned syrups at eight different points in the spectral region between 1200 and 900 cm-1 of the mid-infrared, characteristic of the vibrational modes of carbohydrates in honey, which allows the pre-discrimination of the presence or absence of the syrups studied, and their subsequent quantification, with precision levels lower than 2.0% of the relative standard deviation and relative errors lower than 2.0% (m/m).


Assuntos
Beta vulgaris , Mel , Mel/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Beta vulgaris/química , Carboidratos/análise , Contaminação de Alimentos/análise
10.
Planta ; 258(2): 30, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358618

RESUMO

MAIN CONCLUSION: Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.


Assuntos
Beta vulgaris , Animais , Beta vulgaris/química , Secas , Melhoramento Vegetal , Cloreto de Sódio/farmacologia , Verduras , Água/metabolismo
11.
J Food Sci ; 88(8): 3274-3286, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350070

RESUMO

Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingredients used in the food industry. Due to the same molecular structure, chemical methods cannot distinguish sucrose from both sources. More practical and affordable methods would be valuable. Sucrose samples (cane and beet) were collected from nine countries, 25% (w/w) aqueous solutions were prepared and their absorbances recorded from 200 to 1380 nm. Spectral differences were observable in the ultraviolet-visible (UV-Vis) region from 200 to 600 nm due to impurities in sugar. Linear discriminant analysis (LDA), classification and regression trees, and soft independent modeling of class analogy were tested for the UV-Vis region. All methods showed high performance accuracies. LDA, after selection of five wavelengths, gave 100% correct classification with a simple interpretation. In addition, binary mixtures of the sugar samples were prepared for quantitative analysis by means of partial least squares regression and multiple linear regression (MLR). MLR with first derivative Savitzky-Golay were most acceptable with root mean square error of cross-validation, prediction, and the ratio of (standard error of) prediction to (standard) deviation values of 3.92%, 3.28%, and 9.46, respectively. Using UV-Vis spectra and chemometrics, the results show promise to distinguish between the two different sources of sucrose. An affordable and quick analysis method to differentiate between sugars, produced from either sugar beet or sugarcane, is suggested. This method does not involve complex chemical analysis or high-level experts and can be used in research or by industry to detect the source of the sugar which is important for some countries' agricultural policies.


Assuntos
Beta vulgaris , Saccharum , Sacarose/química , Beta vulgaris/química , Saccharum/química , Quimiometria , Carboidratos/análise , Açúcares , Análise Espectral , Análise dos Mínimos Quadrados , Grão Comestível/química
12.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903265

RESUMO

High-pressure homogenization (HPH) is considered an innovative and modern method of processing and preserving liquid and semi-liquid foods. The aim of this research was to examine the impact of HPH processing on the content of betalain pigments and physicochemical properties of beetroot juice. Combinations of the following HPH parameters were tested: the pressure used (50, 100, 140 MPa), the number of cycles (1 and 3) and the applied cooling or no cooling. The physicochemical analysis of the obtained beetroot juices was based on the determination of the extract, acidity, turbidity, viscosity and color values. Use of higher pressures and a greater number of cycles reduces the turbidity (NTU) of the juice. Moreover, in order to maintain the highest possible extract content and a slight color change of the beetroot juice, it was crucial to perform sample cooling after the HPH process. The quantitative and qualitative profiles of betalains have been also determined in the juices. In terms of the content of betacyanins and betaxanthins, the highest values were found in untreated juice at 75.3 mg and 24.8 mg per 100 mL, respectively. The high-pressure homogenization process resulted in a decrease in the content of betacyanins in the range of 8.5-20.2% and of betaxanthins in the range of 6.5-15.0%, depending on the parameters used. Studies have shown that that the number of cycles was irrelevant, but an increase in pressure from 50 MPa to 100 or 140 MPa had a negative effect on pigment content. Additionally, juice cooling significantly limits the degradation of betalains in beetroot juice.


Assuntos
Beta vulgaris , Betalaínas , Betalaínas/química , Betacianinas/análise , Betaxantinas/análise , Beta vulgaris/química , Verduras/química , Antioxidantes/análise , Extratos Vegetais/metabolismo
13.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903310

RESUMO

An example of the implementation of the principles of the circular economy is the use of sugar beet pulp as animal feed. Here, we investigate the possible use of yeast strains to enrich waste biomass in single-cell protein (SCP). The strains were evaluated for yeast growth (pour plate method), protein increment (Kjeldahl method), assimilation of free amino nitrogen (FAN), and reduction of crude fiber content. All the tested strains were able to grow on hydrolyzed sugar beet pulp-based medium. The greatest increases in protein content were observed for Candida utilis LOCK0021 and Saccharomyces cerevisiae Ethanol Red (ΔN = 2.33%) on fresh sugar beet pulp, and for Scheffersomyces stipitis NCYC1541 (ΔN = 3.04%) on dried sugar beet pulp. All the strains assimilated FAN from the culture medium. The largest reductions in the crude fiber content of the biomass were recorded for Saccharomyces cerevisiae Ethanol Red (Δ = 10.89%) on fresh sugar beet pulp and Candida utilis LOCK0021 (Δ = 15.05%) on dried sugar beet pulp. The results show that sugar beet pulp provides an excellent matrix for SCP and feed production.


Assuntos
Beta vulgaris , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/metabolismo , Beta vulgaris/química , Verduras/metabolismo , Ração Animal , Etanol/metabolismo , Açúcares/metabolismo
14.
J Sci Food Agric ; 103(7): 3550-3557, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36789528

RESUMO

BACKGROUND: Soybean oil bodies (SOB) are droplets of natural emulsified oil. Soybean oil emulsifies well but it is easily oxidized during storage. Beet pectin is a complex anionic polysaccharide, which can be adsorbed on the surface of liposomes to improve their resistance to flocculation. Laccase can covalently cross-link ferulic acid in beet pectin, and its structure is irreversible, which can improve the stability of polysaccharides. RESULTS: At pH 2.5, laccase cross-linked beet pectin high-oil soybean oil body (HOSOB) and high-protein soybean oil body (HPSOB) emulsions showed obvious aggregation and severe stratification, and the oxidation of the emulsions was also high. The flocculation of emulsions decreased with an increase in the pH. The effect of pH on the flocculation of emulsion was confirmed by confocal laser electron microscopy. The ζ potential, emulsification, and rheological shear force increased with increasing pH whereas the particle size and surface hydrophobicity decreased with increasing pH. CONCLUSION: This experiment indicates that the physicochemical stability of the two composite emulsions was strongly affected under acidic conditions but stable under neutral and weakly alkaline conditions. Under the same acid-base conditions, the degree of oxidation of HPSOB composite emulsion changes substantially. The results of this study can provide a basis for the design of very stable emulsions to meet the demand for natural products. © 2023 Society of Chemical Industry.


Assuntos
Beta vulgaris , Pectinas , Antioxidantes , Beta vulgaris/química , Emulsões/química , Lacase , Gotículas Lipídicas , Tamanho da Partícula , Pectinas/química , Polissacarídeos , Proteínas , Óleo de Soja/química , Glycine max , Oxirredução , Fenômenos Químicos
15.
J Agric Food Chem ; 71(4): 2105-2112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668901

RESUMO

Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.


Assuntos
Beta vulgaris , Esterificação , Beta vulgaris/química , Pectinas/química , Arabinose
16.
Int J Biol Macromol ; 226: 679-689, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36436597

RESUMO

Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 µm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.


Assuntos
Beta vulgaris , Emulsões/química , Beta vulgaris/química , Emulsificantes/química , Pectinas/química , Tensão Superficial
17.
J Sci Food Agric ; 103(8): 4131-4142, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36565301

RESUMO

BACKGROUND: Traditional soy protein gel products such as tofu, formed from calcium sulfate or magnesium chloride, have poor textural properties and water retention capacity. Soy glycinin (SG) is the main component affecting the gelation of soy protein and can be cross-linked with polysaccharides, such as sugar beet pectin (SBP), and can be modified by changing system factors (e.g., pH) to improve the gel's properties. Soy glycinin/sugar beet pectin (SG/SBP) complex double network gels were prepared under weakly acidic conditions using laccase cross-linking and heat treatment. The structural changes in SG and the properties of complex gels were investigated. RESULTS: Soy glycinin exposed more hydrophobic groups and free sulfhydryl groups at pH 5.0. Under the action of laccase cross-linking, SBP could promote the unfolding of SG tertiary structures. The SG/SBP complex gels contained 46.77% ß-fold content and had good gelling properties in terms of hardness 290.86 g, adhesiveness 26.87, and springiness 96.70 mm at pH 5.0. The T22 relaxation time had the highest peak, and magnetic resonance imaging (MRI) showed that the gel had even water distribution. Scanning electron microscopy (SEM) and confocal scanning laser microscopy (CLSM) indicated that the SG/SBP complex network structure was uniform, and the pore walls were thicker and contained filamentous structures. CONCLUSION: Soy glycinin/ sugar beet pectin complex network gels have good water-holding, rheological, and textural properties at pH 5.0. The properties of soy protein gels can be improved by binding to polysaccharides, with laccase cross-linked, and adjusting the pH of the solution. © 2022 Society of Chemical Industry.


Assuntos
Beta vulgaris , Pectinas , Pectinas/química , Proteínas de Soja/química , Beta vulgaris/química , Lacase/química , Polissacarídeos/metabolismo , Catálise , Géis/química , Água/metabolismo , Açúcares/metabolismo
18.
J Sci Food Agric ; 103(1): 255-263, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35859266

RESUMO

BACKGROUND: Knowledge about specific functional characteristics, such as viscosimetric, conductometric, tensiometric and structural properties of polysaccharide aqueous solutions is highly important in the successful and adequate application in food emulsion formulation. For the first time detailed characterization of sugar beet fibers aqueous solutions in comparison to high molecular weight (sugar beet pectin) and low molecular weight [octenyl succinic anhydride (OSA) maltodextrin] hydrocolloids/stabilizers was performed through viscometry, conductometry, tensiometry and component analysis. RESULTS: Sugar beet fibers and its water-soluble fraction were investigated. All sugar beet fiber samples showed substantial surface-active properties but different effect on the viscosity values of aqueous solutions. Sugar beet pectin had higher impact on aqueous solutions viscosity values compared to sugar beet fiber samples. Structural bonding between investigated polysaccharides were evaluated through conductometric measurements. Intermolecular linking and probable embedding of OSA maltodextrin molecules into the sugar beet fiber complex structure was detected in conductometric studies. The increased concentration of sugar beet fibers in the presence of sugar beet pectin led to the accelerated increase in specific conductivity values indicating effects of 'macromolecular crowding', intermolecular and intramolecular conformation changes and charge formation. CONCLUSIONS: Detailed characterization of sugar beet fibers provided scientific insight towards fundamental characteristics of sugar beet fiber aqueous solutions. The presented characteristics are particularly applicable in the field of food emulsion stabilization due to the presented surface-active properties of sugar beet fibers as well as specific characteristics of investigated multi-polysaccharide systems. © 2022 Society of Chemical Industry.


Assuntos
Beta vulgaris , Condutometria , Pectinas/química , Beta vulgaris/química , Anidridos Succínicos , Emulsões/química , Água/química , Fibras na Dieta , Açúcares
19.
Crit Rev Food Sci Nutr ; 63(26): 8403-8427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35333666

RESUMO

Beta vulgaris, also known as Beetroot, is a member of a family of Chenopodiaceae and is widely used as a natural food colorant. It gets its distinctive color due to nitrogen-containing water-soluble pigments betalains. Beetroot is an exquisite cradle of nutrients, including proteins, sucrose, carbohydrates, vitamins (B complex and vitamin C), minerals, fiber. They also contain an appreciable amount of phenolic compounds and antioxidants such as coumarins, carotenoids, sesquiterpenoids, triterpenes, flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Recent studies evidenced that beetroot consumption had favorable physiological benefits, leading to improved cardiovascular diseases, hypertension, diabetes, cancer, hepatic steatosis, liver damage, etc. This review gives insights into developing beetroot as a potential and novel ingredient for versatile food applications and the latest research conducted worldwide. The phytochemical diversity of beetroot makes them potential sources of nutraceutical compounds from which functional foods can be obtained. The article aimed to comprehensively collate some of the vital information published on beetroot incurred in the agri-food sector and a comprehensive review detailing the potentiality of tapping bioactive compounds in the entire agriculture-based food sector.


Assuntos
Antioxidantes , Beta vulgaris , Antioxidantes/química , Ácido Ascórbico , Beta vulgaris/química , Betalaínas/metabolismo , Verduras , Vitaminas , Humanos
20.
Mol Divers ; 27(5): 1957-1969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36098859

RESUMO

The Ugi four-component condensation in diluted liposomal suspensions was used to prepare pectin-based submicron capsules. A set of isocyanides and aldehydes was used to optimize the synthesis of capsule shells. Modified sugar beet pectin was selected as a natural polymer with pronounced surface activity to create a capsule shell. At first, liposomal composition was optimized in order to select suitable conditions for capsule formation. Then, the wide set of capsules constructed on modified sugar beet pectin scaffold has been synthesized. The choice was determined by level of substitution degree and possible chemical diversity of the modified surface. Detailed characterization of products has been performed for polysaccharide particles with liposomal core prepared with various processing parameters (concentration, cross-linking components, the density of linkage). The chemical structure, average size, polydispersity index, morphology, stability, and cytotoxicity of obtained particles have been investigated in dependence on the shell content. The obtained submicrometer cross-linked capsules (220-240 nm) with controlled colloidal properties showed high stability and low toxicity. Thus, the proposed carriers have a great potential as sustained drug delivery systems for different administration routes.


Assuntos
Beta vulgaris , Pectinas , Pectinas/química , Beta vulgaris/química , Polímeros , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA